韩国激情一区二区高清在线,亚洲中文字幕网址在线,九色在线精品视频,久久深夜福利亚洲网站

    <object id="jtoc7"><button id="jtoc7"></button></object>

      <object id="jtoc7"></object>

      期刊 科普 SCI期刊 投稿技巧 學術 出書 購物車

      首頁 > 優(yōu)秀范文 > 數(shù)學思維策略的基本原理

      數(shù)學思維策略的基本原理樣例十一篇

      時間:2023-09-04 09:27:16

      序論:速發(fā)表網(wǎng)結合其深厚的文秘經(jīng)驗,特別為您篩選了11篇數(shù)學思維策略的基本原理范文。如果您需要更多原創(chuàng)資料,歡迎隨時與我們的客服老師聯(lián)系,希望您能從中汲取靈感和知識!

      數(shù)學思維策略的基本原理

      篇1

      1.懂得基本原理使學科知識更容易理解

      心理學認為,“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系可稱為下位關系,這種學習便稱為下位學習?!毕挛粚W習具有足夠的穩(wěn)定性,有利于牢固地固定新學知識的意義,使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想方法就能夠更好地理解和掌握數(shù)學內容。

      2.懂得基本原理有利于記憶知識

      布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具。由此可見,數(shù)學思想方法作為數(shù)學學科的一般原理,在數(shù)學學習中是至關重要的。對于中學生來說,“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,能隨時隨地發(fā)生作用,使他們受益終生。

      3.學習基本原理有利于“原理和態(tài)度的遷移”

      布魯納認為,“遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識?!辈懿藕步淌谝舱J為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的”。美國心理學家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中。”因此,那些概括的、鞏固的和清晰的知識能實現(xiàn)遷移。學生學習數(shù)學思想方法有利于實現(xiàn)學習遷移,從而可以較快地提高數(shù)學能力。

      4.結構和原理的學習,能夠縮短初高級知識之間的間隙

      一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義。在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數(shù)學思想方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線。

      二、中學數(shù)學教學內容的層次性

      中學數(shù)學教學內容從總體上可以分為兩個層次:一類是表層知識,一類是深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。

      表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的、教材中明確給出的、具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。

      深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的飛躍,從而使數(shù)學教學超脫題海之苦,更富有朝氣和創(chuàng)造性。

      那種只重視講授表層知識,而不注重滲透數(shù)學思想方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數(shù)學思想方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質。

      三、中學數(shù)學中的主要數(shù)學思想方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于受中學生認知能力和教學內容的限制,數(shù)學教學過程中只能將部分重要的數(shù)學思想落實,而對有些數(shù)學思想不宜要求過高。

      篇2

      第一,懂得基本原理使得學科更容易理解。心理學認為,“由于認知結構中原有的有關觀念在概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習”。當學生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義”,使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容。

      第二,學習基本原理有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記”?!皩W習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具?!庇纱丝梢?,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。

      第三,學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識”。曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的”,“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移”。美國心理學家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中”。學生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力。

      第四,強調結構和原理的學習,“能夠縮小高級知識和初級知識之間的間隙”。一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義。

      二、中學數(shù)學教學內容可分為兩個層次

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。

      表層知識是深層知識的基礎,是《教學大綱》中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步學習和領悟相關的深層知識。

      深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題?!敝?,使其更富有朝氣和創(chuàng)造性。

      那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質。

      三、中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包括了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識、經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般來講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想的指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      四、數(shù)學思想方法的教學模式

      數(shù)學表層知識與深層知識具有相輔相成的關系,這就決定了它們在教學中的辯證統(tǒng)一性?;谏鲜稣J識,我們給出數(shù)學思想方法教學的一個教學模式:操作――掌握――領悟。

      篇3

      第二,有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記?!薄皩W習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具。”由此可見,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生?!?/p>

      第三,學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移。”美國心理學家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中?!睂W生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力。

      第四,強調結構和原理的學習,“能夠縮挾高級‘知識和’初級‘知識之間的間隙?!币话愕刂v,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義。而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數(shù)學思想、方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線。

      1.中學數(shù)學教學內容的層次

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。

      表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。

      深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題海”之苦,使其更富有朝氣和創(chuàng)造性。

      那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質。

      2.中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn),應依據(jù)具體情況在教學中予以滲透。

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      3.數(shù)學思想方法的教學模式

      篇4

               第一.“懂得基本原理使得學科更容易理解”.心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習.”當學生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識,就屬于下位學習了.下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去.學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容.

               第二.有利于記憶.除非把一件件事情放進構造得好的模型里面,否則很快就會忘記.學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來.高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具.

               由此可見,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的.無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生.”

               第三.學習基本原理有利于“原理和態(tài)度的遷移”. 這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識.曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移.”美國心理學家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中.”學生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力.

               第四.強調結構和原理的學習,“能夠縮短‘高級’知識和‘初級’知識之間的間隙.”一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義.而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等.因此,數(shù)學思想、方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線.

              2.中學數(shù)學教學內容的層次

               中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識.表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法.

               表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識.學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識.

               深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識.教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題?!敝啵蛊涓挥谐瘹夂蛣?chuàng)造性.

              那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦.因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質.

              3.中學數(shù)學中的主要數(shù)學思想和方法

               數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識.由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高.我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想.其理由是:

               (1)這三個思想幾乎包攝了全部中學數(shù)學內容;

               (2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;

               (3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;

               (4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎.

               此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn),應依據(jù)具體情況在教學中予以滲透.

              數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關.從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等.一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的.

              4.數(shù)學思想方法的教學模式

               數(shù)學表層知識與深層知識具有相輔相成的關系,這就決定了他們在教學中的辯證統(tǒng)一性.基于上述認識,我們給出數(shù)學思想方法教學的一個教學模式:

      操作——掌握——領悟

               對此模式作如下說明:

               (1)數(shù)學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;

               (2)“操作”是指表層知識教學,即基本知識與技能的教學.“操作”是數(shù)學思想、方法教學的基礎;

      篇5

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。

      表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。

      深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題?!敝?,使其更富有朝氣和創(chuàng)造性。

      那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質。

      2.中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn),應依據(jù)具體情況在教學中予以滲透。

      3.數(shù)學思想方法的教學模式

      數(shù)學表層知識與深層知識具有相輔相成的關系,這就決定了他們在教學中的辯證統(tǒng)一性?;谏鲜稣J識,我們給出數(shù)學思想方法教學的一個教學模式:

      操作――掌握――領悟

      對此模式作如下說明:(1)數(shù)學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;(2)“操作”是指表層知識教學,即基本知識與技能的教學?!安僮鳌笔菙?shù)學思想、方法教學的基礎;(3)“掌握”是指在表層知識教學過程中,學生對表層知識的掌握。學生掌握了一定量的數(shù)學表層知識,是學生能夠接受相關深層知識的前提;(4)“領悟”是指在教師引導下,學生對掌握的有關表層知識的認識深化,即對蘊于其中的數(shù)學思想、方法有所悟,有所體會;(5)數(shù)學思想、方法教學是循環(huán)往復、螺旋上升的過程,往往是幾種數(shù)學思想、方法交織在一起,在教學過程中依據(jù)具體情況在一段時間內突出滲透與明確一種數(shù)學思想或方法,效果可能更好些。

      初中數(shù)學的教學方法是通過分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      第一,“懂得基本原理使得學科更容易理解”。心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習?!碑攲W生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容。

      篇6

      第一,“懂得基本原理使得學科更容易理解”。心理學認為,“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識。就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容。

      第二,有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具?!庇纱丝梢?,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生。”

      第三,學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識?!辈懿藕步淌谝舱J為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移?!泵绹睦韺W家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比。才能遷移到具體的類似學習中?!睂W生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力。

      第四,強調結構和原理的學習,“能夠縮挾‘高級’知識和‘初級’知識之間的間隙。”一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義。而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數(shù)學思想、方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線。

      二、中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多:(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn)。應依據(jù)具體情況在教學中予以滲透。

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則。我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      三、數(shù)學思想方法的教學模式

      數(shù)學表層知識與深層知識具有相輔相成的關系。這就決定了他們在教學中的辯證統(tǒng)一性。基于上述認識,我們給出數(shù)學思想方法教學的一個教學模式:操作——掌握——領悟。

      篇7

      中圖分類號:G632 文獻標識碼:A 文章編號:1002-7661(2012)05-129-01

      一、數(shù)學思想方法教學的心理學意義

      美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結構?!彼^基本結構就是指“基本的、統(tǒng)一的觀點,或者是一般的、基本的原理。”“學習結構就是學習事物是怎樣相互關聯(lián)的?!睌?shù)學思想與方法為數(shù)學學科的一般原理的重要組成部分。下面從布魯納的基本結構學說中來看數(shù)學思想、方法教學所具有的重要意義。

      1、“懂得基本原理使得學科更容易理解”。心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習?!碑攲W生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容。

      2、有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記?!薄皩W習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具。”由此可見,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生。”

      3、學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移。”

      二、中學數(shù)學教學內容的層次

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。

      表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。

      深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題海”之苦,使其更富有朝氣和創(chuàng)造性。

      三、中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      四、數(shù)學思想方法的教學模式

      篇8

      第二,有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具?!庇纱丝梢?,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法隨時隨地發(fā)生作用,使他們受益終生?!?/p>

      第三,學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識?!辈懿藕步淌谝舱J為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移。”美國心理學家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中?!睂W生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力。

      二、中學數(shù)學教學內容的層次

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題?!敝啵蛊涓挥谐瘹夂蛣?chuàng)造性。那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質。三、中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:

      (1)這三個思想幾乎包攝了全部中學數(shù)學內容;

      (2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;

      (3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;

      (4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn),應依據(jù)具體情況在教學中予以滲透。數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      四、數(shù)學思想方法的教學模式

      數(shù)學表層知識與深層知識具有相輔相成的關系,這就決定了他們在教學中的辯證統(tǒng)一性。基于上述認識,我們給出數(shù)學思想方法教學的一個教學模式:操作——掌握——領悟對此模式作如下說明:

      (1)數(shù)學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;

      (2)“操作”是指表層知識教學,即基本知識與技能的教學。“操作”是數(shù)學思想、方法教學的基礎;

      (3)“掌握”是指在表層知識教學過程中,學生對表層知識的掌握。學生掌握了一定量的數(shù)學表層知識,是學生能夠接受相關深層知識的前提;

      (4)“領悟”是指在教師引導下,學生對掌握的有關表層知識的認識深化,即對蘊于其中的數(shù)學思想、方法有所悟,有所體會;

      (5)數(shù)學思想、方法教學是循環(huán)往復、螺旋上升的過程,往往是幾種數(shù)學思想、方法交織在一起,在教學過程中依據(jù)具體情況在一段時間內突出滲透與明確一種數(shù)學思想或方法,效果可能更好些。

      【摘要】教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題?!敝啵蛊涓挥谐瘹夂蛣?chuàng)造性。

      【關鍵詞】數(shù)學思想教學方法探討

      參考文獻:

      篇9

      論文摘要:本文首先論述了數(shù)學思想方法教學的心理學意義,然后說明了中學數(shù)學中的主要數(shù)學思想和方法,最后提出數(shù)學思想方法的教學模式。

      在數(shù)學教學過程中,能否合理的運用數(shù)學思想方法,有時往往是引發(fā)學生學習積極性的關鍵。要合理利用數(shù)學思想方法教學,就必須對其有比較全面的認識。下面我就自身的幾點體會淺談一下:

      一、數(shù)學思想方法教學的心理學意義

      美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結構?!彼^基本結構就是指“基本的、統(tǒng)一的觀點,或者是一般的、基本的原理。”“學習結構就是學習事物是怎樣相互關聯(lián)的?!睌?shù)學思想與方法為數(shù)學學科的一般原理的重要組成部分。下面從布魯納的基本結構學說中來看數(shù)學思想、方法教學所具有的重要意義。

      第一,“懂得基本原理使得學科更容易理解”。心理學認為,“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識。就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容。

      第二,有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記?!薄皩W習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具。”由此可見,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生。” "

      第三,學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識?!辈懿藕步淌谝舱J為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移?!泵绹睦韺W家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比。才能遷移到具體的類似學習中。”學生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力。

      第四,強調結構和原理的學習,“能夠縮挾‘高級’知識和‘初級’知識之間的間隙。”一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義。而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數(shù)學思想、方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線。

      二、中學數(shù)學中的主要數(shù)學思想和方法

      此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn)。應依據(jù)具體情況在教學中予以滲透。

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則。我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。

      篇10

      一、數(shù)學思想方法教學的心理學意義

      美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結構.”所謂基本結構就是指“基本的、統(tǒng)一的觀點,或者是一般的、基本的原理.”“學習結構就是學習事物是怎樣相互關聯(lián)的.”數(shù)學思想與方法為數(shù)學學科的一般原理的重要組成部分.下面從布魯納的基本結構學說中來看數(shù)學思想、方法教學所具有的重要意義.

      第一,“懂得基本原理使得學科更容易理解”.心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習.”當學生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識,就屬于下位學習了.下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去.學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容.

      第二,有利于記憶.布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記.”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來.高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具.”由此可見,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的.無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生.”

      第三,學習基本原理有利于“原理和態(tài)度的遷移”.布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識.”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移.”美國心理學家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中.”學生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力.

      第四,強調結構和原理的學習,“能夠縮挾高級’知識和‘初級’知識之間的間隙.”一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義.而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等.因此,數(shù)學思想、方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線.

      二、中學數(shù)學教學內容的層次

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識.表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法.

      表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識.學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識.

      深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識.教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題?!敝?,使其更富有朝氣和創(chuàng)造性.那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦.因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質.

      三、中學數(shù)學中的主要數(shù)學思想和方法

      數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識.由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高.我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想.其理由是:(1)這三個思想幾乎包攝了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎.

      此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn),應依據(jù)具體情況在教學中予以滲透.

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關.從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等.一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的.

      篇11

      新課程改革實施以來,教育理念、教學方式、評價制度等,都有了喜人的變化。但對于更加“內容”的東西,如數(shù)學思想方法的滲透、數(shù)學文化的伸張、數(shù)學思維的拓展等等。我們關注得還不夠?!皵?shù)學是思維的體操”“形式”的改良能讓我們的數(shù)學變得富有趣味,更加接近學生的學習心理,讓學生樂學,但是,數(shù)學教學的終極目標是要促進學習思維發(fā)展,而唯有“思想方法、文化、思維”等才是數(shù)學的本質,所以,我們更應追求“內容”上的到位。在這里,主要談談數(shù)學思想方法的滲透。任何一門學科在其發(fā)生發(fā)展過程中,都將逐步形成一套研究問題的思想方法,數(shù)學也不例外。那么何謂數(shù)學思想方法?狹義上講,數(shù)學思想方法研究的對象是數(shù)學本身的論證、運算以及應用的思想、方法和手段。廣義上講,除了上述內容外,數(shù)學思想方法研究的對象還包括數(shù)學的對象、性質、特征、作用及其產(chǎn)生發(fā)展的規(guī)律。

      隨著數(shù)學教育改革的不斷深入,關于“數(shù)學思想方法”的探索已引起了數(shù)學教育工作者的關注。過去,我們在教學中只注意具體的解題技巧、解題程序和方法,而忽略數(shù)學思想方法的教學,這在以“反復做題,總結套路,歸納成型,多題一解”為特征的題海戰(zhàn)術中表現(xiàn)得尤為突出。為改變這種狀況,本文試圖通過學習與思考,并聯(lián)系自己的教學實踐,淺談中學數(shù)學思想方法及其教學。思想是數(shù)學的靈魂,要置數(shù)學思想于數(shù)學教育的中心位置。所謂數(shù)學思想方法,就是數(shù)學研究活動中解決問題的根本想法,是對數(shù)學規(guī)律的理性認識,也是在對數(shù)學知識和方法作進一步認識和概括的基礎上形成的一般性觀點。

      一、數(shù)學思想方法教學的心理學意義

      美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結構?!彼^基本結構就是指“基本的、統(tǒng)一的觀點,或者是一般的、基本的原理?!薄皩W習結構就是學習事物是怎樣相互關聯(lián)的?!睌?shù)學思想與方法為數(shù)學學科的一般原理的重要組成部分。下面從布魯納的基本結構學說中來看數(shù)學思想、方法教學所具有的重要意義。

      (一)“懂得基本原理使得學科更容易理解”。心理學認為“由于認知結構中原有的有關觀念在包括和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義。”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內容。

      (二)有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具?!庇纱丝梢?,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神,數(shù)學的思維方法、研究方法,才能隨時隨地發(fā)生作用,使他們受益終生?!?/p>

      (三)學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識?!辈懿藕步淌谝舱J為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的。”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移?!泵绹睦韺W家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中。”學生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質量和數(shù)學能力。

      (四)強調結構和原理的學習,“能夠縮挾高級知識和初級知識之間的間隙。”一般地講,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的含義。而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數(shù)學思想、方法是聯(lián)結中學數(shù)學與高等數(shù)學的一條紅線。

      二、中學數(shù)學教學內容的層次需要數(shù)學思想

      中學數(shù)學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數(shù)學的基本知識和基本技能,深層知識主要指數(shù)學思想和數(shù)學方法。

      (一)表層知識是深層知識的基礎,是教學大綱中明確規(guī)定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。

      (二)深層知識蘊含于表層知識之中,是數(shù)學的精髓,它支撐和統(tǒng)帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數(shù)學教學超脫“題海”之苦,使其更富有朝氣和創(chuàng)造性。

      (三)那種只重視講授表層知識,而不注重滲透數(shù)學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數(shù)學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數(shù)學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數(shù)學能力,形成良好的數(shù)學素質。

      三、中學數(shù)學中的主要數(shù)學思想和方法

      (一)數(shù)學思想是分析、處理和解決數(shù)學問題的根本想法,是對數(shù)學規(guī)律的理性認識。由于中學生認知能力和中學數(shù)學教學內容的限制,只能將部分重要的數(shù)學思想落實到數(shù)學教學過程中,而對有些數(shù)學思想不宜要求過高。我們認為,在中學數(shù)學中應予以重視的數(shù)學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數(shù)學內容;(2)符合中學生的思維能力及他們的實際生活經(jīng)驗,易于被他們理解和掌握;(3)在中學數(shù)學教學中,運用這些思想分析、處理和解決數(shù)學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數(shù)學打下較好的基礎。

      (二)此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn),應依據(jù)具體情況在教學中予以滲透。

      數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則,我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。