韩国激情一区二区高清在线,亚洲中文字幕网址在线,九色在线精品视频,久久深夜福利亚洲网站

    <object id="jtoc7"><button id="jtoc7"></button></object>

      <object id="jtoc7"></object>

      期刊 科普 SCI期刊 投稿技巧 學術 出書 購物車

      首頁 > 優(yōu)秀范文 > 現(xiàn)代電力電子技術論文

      現(xiàn)代電力電子技術論文樣例十一篇

      時間:2023-05-05 09:11:51

      序論:速發(fā)表網(wǎng)結合其深厚的文秘經(jīng)驗,特別為您篩選了11篇現(xiàn)代電力電子技術論文范文。如果您需要更多原創(chuàng)資料,歡迎隨時與我們的客服老師聯(lián)系,希望您能從中汲取靈感和知識!

      現(xiàn)代電力電子技術論文

      篇1

      0 前言

      現(xiàn)代電力電子技術的發(fā)展經(jīng)歷了幾個不同的階段,整流器時代、逆變器時代和變頻器時代,現(xiàn)代電力電子技術屬于變頻器時代,同時又與微電子技術有效地進行了結合,這不僅使其應用范圍十分廣泛,而且在國民經(jīng)濟中的地位也變得越來越重要。

      1 現(xiàn)代電力電子技術的發(fā)展趨勢

      在當前科學技術快速發(fā)展的新形勢下,隨著電力電子技術的不斷革新,其發(fā)展達到了一個較高的水平?,F(xiàn)代電力電子技術主要是對電源技術進行開發(fā)和應用,可以說電源技術的發(fā)展是當前電力電子技術發(fā)展的主要方向。

      1.1 現(xiàn)代電力電子技術向模塊化和集成化轉變

      電源單元和功率器件作為現(xiàn)代電力電子技術的重要組成部分,是電子器件智能化的核心所在,其組成器件具有微小性,因此電力電子器件結構也更為緊湊,體積較小,但其能夠與其他不同器件的優(yōu)點進行有效綜合,所以其具有顯著的優(yōu)勢。也加快了現(xiàn)代電力電子技術向模塊化和集成化轉變的進程,為電力系統(tǒng)使用性能的提升奠定了良好的基礎。

      1.2 現(xiàn)代電力電子技術從低頻向高頻化轉變

      變壓器供電頻率與變壓器的電容體積、電感呈現(xiàn)反比的關系,在電力電子器件體積不斷縮小的情況下,現(xiàn)代電力電子技術必然會加快向高頻化方向轉化。可控制關斷型電力電子器件的出現(xiàn)即是現(xiàn)代電力電子技術向高頻轉化的重要標志。而且隨著科學技術發(fā)展速度的加快,電力電子技術也必然會向著更高頻的方向發(fā)展。

      1.3 現(xiàn)代電力電子技術向全控化和數(shù)字化轉變

      傳統(tǒng)的電力電子器件在使用過程中存在著一些限制,而且關斷電器時還會產(chǎn)生一些危險,自關斷的全控型器件在市場上出現(xiàn)后,有效地彌補了這些限制和避免了危險的發(fā)生,這也是現(xiàn)代電力電子技術變革的重要體現(xiàn),表明現(xiàn)代電力電子技術加快了數(shù)字化發(fā)展的進程。

      1.4 現(xiàn)代電力電子技術向綠色化轉變

      現(xiàn)代電力電子技術向綠色化轉變主要表現(xiàn)在節(jié)能和電子產(chǎn)品兩個方面。相比于傳統(tǒng)的電力電子技術來講,現(xiàn)代電力電子技術的節(jié)能性更好,這也實現(xiàn)了發(fā)電容量的有效節(jié)約,對環(huán)境保護帶來了較好的效果。一直以來一些電子設備會將嚴重的高次諧波電流入到電網(wǎng)中,給電網(wǎng)帶來較大的污染,導致電網(wǎng)總功率質量下降,電網(wǎng)電壓出現(xiàn)不同程序的畸變。到了上世紀末期,各種有源濾波器和補償器的面世,實現(xiàn)了對功率參數(shù)的修正,從而為現(xiàn)代電力電子技術的綠色化發(fā)展奠定了良好的基礎。

      2 現(xiàn)代電力電子技術的應用

      現(xiàn)代電力電子技術的功能具有多樣性的特點,其在多個領域都有著廣泛的應用,這也決定了現(xiàn)代電力電子技術在國民經(jīng)濟發(fā)展中占據(jù)非常重要的地位,有著不可替代的作用。

      2.1 電源方面

      (1)一般電源。現(xiàn)代電力電子技術在開關電源和供電電源方面都取得了較大的進展,交流電直接由整流器轉變?yōu)橹绷麟?,這部分直流電一部分由逆變器轉換為交流,然后經(jīng)由轉換開關到達負載,而另一部分則直接對蓄電池組進行充電。一旦逆變器發(fā)生故障,蓄電池組則作為備用電源開始直接向負載提供能量。在現(xiàn)在的電力電子器件中普遍采用MOSFET和IGBT作為電源,不僅具有較好的降噪性,而且電源的效率和可靠性也能夠得到有效的保障。

      (2)專用電源。高頻逆變式焊機電源和大功率開關型高壓直流電源是比較典型的兩種應用現(xiàn)代電力電子技術的專用電源。高頻逆變式焊機電源是一種高性能的電源,由于大容量模塊IGBT的普遍使用,使得這種電源有著更加廣闊的應用前景,逆變式焊機電源基本采用的都是交流-直流-交流-直流的轉換方法,由于焊機工作的環(huán)境條件惡劣,所以燃弧、短路等就成為了司空見慣的問題,而采用IGBT組成的PWM相關控制器,能夠提取和分析參數(shù)和信息,進而預先對系統(tǒng)做出處理和調整。大功率開關型高壓直流電源主要應用CT機、靜電除塵等比較大型的設備上,因為這類設備電壓比較高,甚至達到了50 ~ 159kV,將市電經(jīng)過整流器整流變?yōu)橹绷鳎缓笈c諧振逆變電路串聯(lián),逆變?yōu)楦哳l電壓,再升壓,最后整流成為直流高壓。

      2.2 傳動控制及牽引

      這主要應用在無軌電車、地鐵列車、電動車的無級變速和控制等等方面,通過將一個固定的直流電壓轉換為一個可以變化的直流電壓,這樣就能夠使控制更加的平穩(wěn)和快速,而且還可以節(jié)能。

      2.3 在電力系統(tǒng)中的應用

      在發(fā)電系統(tǒng)中現(xiàn)代電力電子技術的應用更是廣泛,比如說水力風力發(fā)電、用電系統(tǒng)、配電、輸電等等都和現(xiàn)代電力電子技術有著密切的聯(lián)系。目前的風力電力機組已經(jīng)結合了機械制造、空氣動力學、計算機控制技術、電力電子技術等等,而現(xiàn)代電力電子技術就是發(fā)電系統(tǒng)中不可或缺的重要技術,它對于電能的轉換、機組的控制和改善電能質量等都很重要。

      2.4 在節(jié)能和改造傳統(tǒng)行業(yè)中的應用

      現(xiàn)代工作的開展離不開電能的支持,電能是現(xiàn)代工業(yè)的重要動力和能量源頭。隨著我國工業(yè)用電量不斷增加,用電的不合理及浪費現(xiàn)象也日益顯現(xiàn)出來。這就需要有效地降低能源的消耗,提高電能的利用效率,以便于能夠對當前能源緊缺的局面起到一定的緩解作用。因此需要充分的發(fā)揮現(xiàn)代電力電子技術的性能優(yōu)勢,有效地提高現(xiàn)代電力電子技術的效率,應用現(xiàn)代電力電子技術,通過工業(yè)控制有效地將電能轉換為勞動力,建成現(xiàn)代化的智能車庫,從而降低工人的勞動強度,實現(xiàn)人力資源的節(jié)約,確保勞動生產(chǎn)力的提高,以便于推動傳統(tǒng)行業(yè)的改造進程。

      2.5 在家用電器方面的應用

      現(xiàn)代電力電子技術在我們日常生活中應用也較為廣泛,當前家用電器普遍應用現(xiàn)代電力電子技術,給我們的日常生活帶來了較大的便利。許多電器都只需要按下按鈕就能進行工作,而不需要人們親自動手。

      3 應用展望

      在今后現(xiàn)代電力電子技術應用過程中,需要重視以下幾個方面的問題:首先,需要對節(jié)能和環(huán)保給予充分的重視,通過完善控制設備和設計專用的電機來有效地提高電機系統(tǒng)的使用性能和效率;其次,為了實現(xiàn)節(jié)能和環(huán)保,則需要使用中高壓直流轉電系統(tǒng),使其實現(xiàn)低能耗及低污染;最后,需要加快解決電力系統(tǒng)中儲電裝置的設置問題,需要電力系統(tǒng)設計者從控制技術等方面來制定切實可行的解決方案,從而對電能儲備中存在問題進行有效解決,更好地推動電力系統(tǒng)的持續(xù)、穩(wěn)定發(fā)展。

      4 結語

      現(xiàn)代電力電子技術在多個領域都得到了廣泛的應用,特別是對電網(wǎng)的控制和轉換上發(fā)揮著非常重要的作用。通過現(xiàn)代電力電子技術的應用,使大功率電能成為其他高新技術的重要基礎,這也決定了現(xiàn)代電力電子技術在國民經(jīng)濟發(fā)展中的重要地位具有不可替代性,對推動經(jīng)濟和社會的發(fā)展發(fā)揮著非常重要的作用。

      參考文獻:

      [1] 劉增金.電力電子技術的發(fā)展及應用探究[J].電子世界,2011(9):19+25.

      [2] 冷海濱.現(xiàn)代電力電子技術的發(fā)展趨勢探析[J].電子技術與軟件工程,2014(1):156-157.

      [3] 韋和平.現(xiàn)代電力電子及電源技術的發(fā)展[J].現(xiàn)代電子技術,2005(18):102-105.

      篇2

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      2.現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

      目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      3.高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

      3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關電源產(chǎn)品奠定了基礎。

      現(xiàn)代電力電子技術是開關電源技術發(fā)展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現(xiàn),現(xiàn)代電源技術將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優(yōu)良的開關電源。

      總而言之,電力電子及開關電源技術因應用需求不斷向前發(fā)展,新技術的出現(xiàn)又會使許多應用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術的成熟,實現(xiàn)高效率用電和高品質用電相結合。這幾年,隨著通信行業(yè)的發(fā)展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發(fā)研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關電源技術為核心的專用電源、工業(yè)電源正在等待著人們去開發(fā)。

      參考文獻

      (l)林渭勛:淺談半導體高頻電力電子技術,電力電子技術選編,浙江大學,384-390,1992

      篇3

      1概述

      自本世紀五十年代未第一只晶閘管問世以來,電力電子技術開始登上現(xiàn)代電氣傳動技術舞臺,以此為基礎開發(fā)的可控硅整流裝置,是電氣傳動領域的一次革命,使電能的變換和控制從旋轉變流機組和靜止離子變流器進入由電力電子器件構成的變流器時代,這標志著電力電子的誕生。進入70年代晶閘管開始形成由低電壓小電流到高電壓大電流的系列產(chǎn)品,普通晶閘管不能自關斷的半控型器件,被稱為第一代電力電子器件。隨著電力電子技術理論研究和制造工藝水平的不斷提高,電力電子器件在容易和類型等方面得到了很大發(fā)展,是電力電子技術的又一次飛躍,先后研制出GTR.GTO,功率MOSFET等自關斷全控型第二代電力電子器件。而以絕緣柵雙極晶體管(IGBT)為代表的第三代電力電子器件,開始向大容易高頻率、響應快、低損耗方向發(fā)展。而進入90年代電力電子器件正朝著復臺化、標準模塊化、智能化、功率集成的方向發(fā)展,以此為基礎形成一條以電力電子技術理論研究,器件開發(fā)研制,應用滲透性,在國際上電力電子技術是競爭最激烈的高新技術領域。論文百事通

      2電力電子器發(fā)展回顧

      整流管是電力電子器件中結構最簡單,應用最廣泛的一種器件。目前已形成普通型,快恢復型和肖特基型三大系列產(chǎn)品,電力整流管對改善各種電力電子電路的性能,降低電路損耗和提高電流使用效率等方面都具有非常重要的作用。自1958年美國通用電氣GE公司研制出第一個工業(yè)用普通晶閘管開始,其結構的改進和工藝的改革為新器件開發(fā)研制奠定了基礎,在以后的十年間開發(fā)研制出雙向,逆變、逆導、非對稱晶閘管,至今晶閘管系列產(chǎn)品仍有較為廣泛的市場。

      1964年在美國第一次試制成功了0.5kV/0.01kA的可關斷的GTO至今,目前以達到9kV/0.25kA/0.8kHz的可關斷的GTO至今,目前以達到9kV/2.5kA/0.8kHZ及6kV/6kA/1kHZ的水平,在當前各種自關斷器件中GTO容量量最大,但其工作頻率最低,但其在大功率電力牽引驅動中有明顯的優(yōu)勢,因此它在中壓、大客量領域中占有一席之地。70年代研制出GTR系列產(chǎn)品,其額定值已達1.8kV/0.8kA/2kHZ,0.6kV/0.003kA/100kHZ,它具有組成的電路靈活成熟,開關損耗小、開關時間短等特點,在中等容量、中等頻率的電路中應用廣泛,而作為高性能,大容量的第三代絕緣柵型雙極性晶體管IGBT,因其具有電壓型控制,輸入阻抗大、驅動功率小,開關損耗低及工作頻率高等特點,其有著廣闊的發(fā)展前景。而IGCT是最近發(fā)展起來的新型器件,它是在GTO基礎上發(fā)展起來的器件,稱為集成門極換流晶閘管,也有人稱之為發(fā)射極關斷晶閘管,它的瞬時開關頻率可達20kHZ,關斷時間為1μs,dildt4kA/ms,du/dt10-20kV/ms,交流阻斷電壓6kV,直流阻斷電壓3.9kV,開關時間<2ks,導通壓降3600A時,2.8V,開關頻率>1000Hz。

      3電力電子器件發(fā)展趨勢

      進入90年代電力電子器件的研究和開發(fā),已進入高頻化,標準模塊化,集成化和智能時代。從理論分析和實驗證明電氣產(chǎn)品的體積與重量的縮小與供電頻率的平方根成反比,也就說,當我們將50Hz的標準二頻大幅的提高之后,使用這樣工頻的電氣設備的體積與重量就能大大縮小,使電氣設備制造節(jié)約材料,運行時節(jié)電就更加明顯,設備的系統(tǒng)性能亦大為改善,尤其是對航天工業(yè)其意義十分深遠的。故電力電子器件的高頻化是今后電力電子技術創(chuàng)新的主導方向,而硬件結構的標準模塊是器件發(fā)展的必然趨勢,目前先進的模塊,已經(jīng)包括開關元件和與其反向并聯(lián)的續(xù)流二極管在內及驅動保護電路多個單元,并都以標準化和生產(chǎn)出系列產(chǎn)品,并且可以在一致性與可靠性上達到極高的水平。目前世界上許多大公司已開發(fā)出IPM智能化功率模塊,如日本三菱、東芝及美國的國際整流器公司已有成熟的產(chǎn)品推出。日本新電元公司的IPM智能化功率模塊的主要特點是:新晨

      3.1它內部集成了功率芯片,檢測電路及驅動電路,使主電路的結構為最簡。

      篇4

      1.電力電子技術的發(fā)展

      現(xiàn)代電力電子技術的發(fā)展方向,是從以低頻技術處理問題為主的傳統(tǒng)電力電子學,向以高頻技術處理問題為主的現(xiàn)代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統(tǒng)電力電子技術已經(jīng)進入現(xiàn)代電力電子時代。

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      2.現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

      目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      3.高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

      3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關電源產(chǎn)品奠定了基礎。

      篇5

      當前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術將使電源技術更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質用電相結合。

      一、電力電子技術的發(fā)展

      現(xiàn)代電力電子技術的發(fā)展方向,是從以低頻技術處理問題為主的傳統(tǒng)電力電子學,向以高頻技術處理問題為主的現(xiàn)代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統(tǒng)電力電子技術已經(jīng)進入現(xiàn)代電力電子時代。

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟姡虼嗽诹甏推呤甏?,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      二、現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

      目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?,采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考米钚吕碚摵图夹g成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      三、高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

      3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      篇6

      現(xiàn)代電源技術是應用電力電子半導體器件,綜合自動控制、計算機(微處理器)技術和電磁技術的多學科邊緣交又技術。在各種高質量、高效、高可靠性的電源中起關鍵作用,是現(xiàn)代電力電子技術的具體應用。

      當前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術將使電源技術更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質用電相結合。

      1.電力電子技術的發(fā)展

      現(xiàn)代電力電子技術的發(fā)展方向,是從以低頻技術處理問題為主的傳統(tǒng)電力電子學,向以高頻技術處理問題為主的現(xiàn)代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統(tǒng)電力電子技術已經(jīng)進入現(xiàn)代電力電子時代。

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      2.現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日"能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂"電力公害",例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)模控制集成電路作基本部件,利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      3.高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)"整流行業(yè)"的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為"開關變換類電源",其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于"標準"功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了"智能化"功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了"用戶專用"功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。

      總而言之,電力電子及開關電源技術因應用需求不斷向前發(fā)展,新技術的出現(xiàn)又會使許多應用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術的成熟,實現(xiàn)高效率用電和高品質用電相結合。這幾年,隨著通信行業(yè)的發(fā)展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發(fā)研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關電源技術為核心的專用電源、工業(yè)電源正在等待著人們去開發(fā)。

      參考文獻:

      篇7

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)取_@時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      2.現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

      目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      3.高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

      3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關電源產(chǎn)品奠定了基礎。

      現(xiàn)代電力電子技術是開關電源技術發(fā)展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現(xiàn),現(xiàn)代電源技術將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優(yōu)良的開關電源。

      總而言之,電力電子及開關電源技術因應用需求不斷向前發(fā)展,新技術的出現(xiàn)又會使許多應用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術的成熟,實現(xiàn)高效率用電和高品質用電相結合。這幾年,隨著通信行業(yè)的發(fā)展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發(fā)研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關電源技術為核心的專用電源、工業(yè)電源正在等待著人們去開發(fā)。

      參考文獻

      (l)林渭勛:淺談半導體高頻電力電子技術,電力電子技術選編,浙江大學,384-390,1992

      (2)季幼章:迎接知識經(jīng)濟時代,發(fā)展電源技術應用,電源技術應用,N0.2,l998

      (3)葉治正,葉靖國:開關穩(wěn)壓電源。高等教育出版社,1998

      篇8

      現(xiàn)代電力電子技術的發(fā)展方向,是從以低頻技術處理問題為主的傳統(tǒng)電力電子學,向以高頻技術處理問題為主的現(xiàn)代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統(tǒng)電力電子技術已經(jīng)進入現(xiàn)代電力電子時代。

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      2.現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

      目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      3.高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

      3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在

      六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在

      八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      篇9

      作者簡介:侯麗華(1966-),女,滿族,吉林伊通人,長春工程學院教師發(fā)展中心主任兼教務處副處長,教授;杜波(1976-),女,吉林長春人,長春工程學院電氣與信息工程學院,副教授。(吉林 長春 130012)

      中圖分類號:G642.0 文獻標識碼:A 文章編號:1007-0079(2013)35-0072-02

      “電力電子技術”課程是自動化專業(yè)重要的專業(yè)基礎課,是一門工程應用性很強的課程。該課程具有教學內容多、課時少、更新快的特點。如何在有限學時內使學生較好地掌握課程知識,提高工程實踐能力和創(chuàng)新能力,增強學習興趣,是教學改革要解決的主要問題。長春工程學院(以下簡稱“我?!保半娏﹄娮蛹夹g”課程組根據(jù)學校辦學定位和人才培養(yǎng)目標,在明確了自動化專業(yè)面向基礎工業(yè)基層一線應用型人才培養(yǎng)目標、基本規(guī)格、專業(yè)核心能力以及知識體系等方面基礎上,緊密結合工業(yè)企業(yè)現(xiàn)場實際和電力電子技術發(fā)展現(xiàn)狀,以先進的教育思想為指導,以應用能力和工程素質培養(yǎng)為核心,不斷整合教學內容,完善實驗教學條件,開發(fā)綜合性和設計性實驗項目,增加實踐環(huán)節(jié),改進教學方法與手段,改革考試方式,在教學實踐中取得了較好的效果。

      一、優(yōu)化教學內容,構建以應用能力培養(yǎng)為核心的課程體系

      1.課程建設與改革思路

      教學內容和教學體系的改革是“電力電子技術”課程改革中最重要的環(huán)節(jié),直接關系到教學質量的提高,關系到應用型人才培養(yǎng)的要求。我校按照電力電子器件―電力電子變換電路―電力電子電路的微機控制技術―電力電子技術應用的思路,以電力電子器件為電路服務,電路為電力電子系統(tǒng)服務,系統(tǒng)為電力電子應用服務的理念作為教學內容設置的主導思想,以應用能力和工程素質培養(yǎng)為核心,精選理論內容,強化技術應用,及時而恰當?shù)匾腚娏﹄娮蛹夹g的新知識、新技術、新工藝。

      2.調整教學內容

      在教學設計上理論與實踐相結合,知識傳授與應用能力培養(yǎng)相結合,課內與課外相結合,講授與研討相結合。將電力電子器件、變換電路作為傳統(tǒng)內容,將電力電子技術應用作為實用內容,將最先進的自動控制生產(chǎn)線作為新技術,對典型電力電子及電氣傳動系統(tǒng)分析作為討論內容,將科研課題引入課堂作為啟發(fā)內容,通過典型案例分析,將理論與實際結合,培養(yǎng)學生解決實際問題的能力,并通過滲透行業(yè)規(guī)范、安全操作規(guī)程、文明生產(chǎn)等知識培養(yǎng)學生的工程素質。課程的講授以電力電子器件的工作原理、特性、參數(shù)、選擇、驅動與保護電路為基礎,以AC/DC、DC/AC、DC/DC、AC/AC變換電路結構、工作原理、波形分析和參數(shù)計算及電路設計為核心,以微機控制的脈寬調制技術(PWM)和各種軟開關技術作為新的控制方法和新技術,把電力電子學科的發(fā)展方向引入課堂。以電力電子器件的應用電路為教學的重點,解決實際工程問題,使學生能充分認識現(xiàn)代電力電子技術對交、直流電路的控制和變換能力,并掌握各種變換原理和方法,為后續(xù)課程“運動控制系統(tǒng)”深入學習及畢業(yè)設計打下堅實的基礎。

      二、強化實踐教學,提高學生實踐能力和創(chuàng)新能力

      1.完善實踐教學條件

      “電力電子技術”課程具有很強的工程性和實用性,而實驗是培養(yǎng)學生理論聯(lián)系實際、動手能力、嚴謹?shù)膽B(tài)度和科學研究方法的重要手段。因此,以營造真實的、先進的工程環(huán)境為目標,緊密結合工程實際應用,投入100多萬元建設和完善了電力電子技術實驗室?,F(xiàn)實驗室擁有實驗設備24臺套,開發(fā)了電力電子技術仿真研究平臺,構建了電力電子技術實踐教學體系(包括課內實驗、課外實驗、課程設計、生產(chǎn)實習和畢業(yè)設計等),編制相關的教學文件。實驗室向學生全面開放,學生以團隊的形式開展自主性實驗和學科競賽培訓,并為學生提供實際工程技術資料、仿真實訓教學軟件,培養(yǎng)工程實踐應用能力。

      2.精心設計實驗內容

      課程組精心設計了實驗教學項目和內容,引導學生從問題出發(fā),逐步由基礎實驗走向設計性和綜合性實驗,再過渡到創(chuàng)新性實驗。開設了晶閘管整流、逆變的驗證性實驗,使學生對本課程的應用有初步認識;對直流斬波、交交變換以及PWM控制技術部分的實驗,則由教師給出電路參數(shù)要求,由學生自行設計主電路、驅動電路等,完成設計性實驗,培養(yǎng)學生分析問題,解決問題的能力;軟開關技術的實現(xiàn)等具有較高實用價值的實驗項目,密切聯(lián)系著當今電力電子技術發(fā)展的最前沿技術,并且在國民經(jīng)濟發(fā)展中起著重要作用。通過實驗學生了解了電力電子新技術的發(fā)展動態(tài),同時對本課程的應用領域、可以解決的問題有了更直觀感性的認識。實驗項目與科研、工程、社會應用實踐密切聯(lián)系,形成良性互動,實現(xiàn)基礎與前沿、經(jīng)典與現(xiàn)代的有機結合,有利于學生創(chuàng)新能力的培養(yǎng)和自主訓練。

      3.增設課程設計與調試環(huán)節(jié)

      開設了1周“電力電子技術”課程設計與調試實踐環(huán)節(jié),以完整的電力電子系統(tǒng)為載體,將電力電子器件選擇以及電力電子主電路、驅動電路、保護電路、檢測電路、控制電路等內容有機地結合起來,使學生通過設計、組裝、實驗和調試“四位一體”的訓練,培養(yǎng)學生的實踐能力和創(chuàng)新能力。同時,在教學中使用計算機仿真軟件Matlab/Simulink搭建各種常用電力電子電路,且可方便地調整電路的參數(shù)進行仿真,培養(yǎng)學生應用計算機處理復雜電力電子電路的能力,也為日后從事工程設計和科學研究打下良好的基礎。

      三、改進教學方法與手段,調動學生學習主動性和積極性

      在實際教學實踐中,筆者始終堅持以學生為主體、教師為主導、能力為主線的教育理念,根據(jù)課程內容合理采用不同的教學方法組織課堂教學,將“理論+實踐+應用能力”的教學模式貫穿在整個教學活動中,由傳統(tǒng)的教師滿堂灌唱獨角戲變成了教師學生共同參與的互動學習,教與學融為一體。教師有所教,學生有所學,極大地調動了學生的學習積極性,加深了學生的理解,加快了學習步伐。通過啟發(fā)教學法、案例教學法、任務驅動教學方法等,增強學生主觀能動性,活躍課堂氣氛,挖掘學生潛力,增強專業(yè)素養(yǎng),逐漸讓學生由“學會”變成“會學”,由被動變主動汲取知識。

      為了分析電力電子器件和電路的工作狀態(tài),使學生弄清電路中能量的變換和傳遞,筆者制作了本課程比較完善的多媒體教學課件。利用多媒體技術將實際應用中的電路和電力電子裝置做成影音資料帶到課堂上,結合典型工程實例,并把電力電子前沿的研究狀況、最新的研究成果以圖表、圖片等方式充實到教學課件中,提高學生的感性認識,激發(fā)學生學習的興趣,不斷提高教學效果及教學質量。同時,建設了本課程的教學網(wǎng)站,網(wǎng)站資料豐富,包括教學資料和典型工程實例等,學生可以在網(wǎng)上學習,教師可以在網(wǎng)上進行答疑,激發(fā)了學生學習的興趣,提高了教學效果。

      四、改革考核方式,提高學生對知識的綜合運用能力

      1.考試過程全程化

      教師根據(jù)“電力電子技術”課程性質和不同階段的教學要求,通過課堂提問、討論、平時作業(yè)、單元測驗、實際操作、撰寫報告或論文等方式加強形成性考試評價,并安排階段性考試以強化學生平時對課程教學內容的學習和掌握,弱化期末終結性考核。

      2.考核內容能力化

      考核內容圍繞應用能力和工程素質培養(yǎng)為核心這個目標設置,結合新的“電力電子技術”教學內容體系,加大電力電子器件特性分析、實際電路分析、應用案例分析、實踐技能的比例,側重考查學生對知識的綜合運用、解決問題的能力。

      3.考核方式多元化

      根據(jù)不同階段的教學要求,考核采取口試、筆試(開卷、閉卷)、開發(fā)設計相結合的形式,變單一形式的考核為多種形式的考核。

      五、組織課外科技創(chuàng)新活動,探索課內與課外培養(yǎng)的有效機制

      按照課內培養(yǎng)與課外培養(yǎng)相結合的原則,把培養(yǎng)學生實踐創(chuàng)新能力固化在教學任務中,成立了課外科技活動小組,注意引導和鼓勵學生積極參加各種科技競賽活動。依托電力電子實驗室的硬件設施,積極組織學生參加全國大學生電子設計大賽和“挑戰(zhàn)杯”競賽,以培養(yǎng)和提高學生的自學能力、實踐能力和創(chuàng)新意識。在運行中,加強課外實踐活動的組織和管理,制訂《大學生課外科技創(chuàng)新實踐活動運行管理辦法》和《實驗室開放運行管理辦法》,對大學生第二課堂教育的條件保障、激勵政策、管理辦法、評價辦法等做了明確規(guī)定,形成了有效的大學生科技創(chuàng)新實踐活動保障體系。

      六、加強青年教師培養(yǎng),提高課程組教師整體水平

      師資隊伍建設是課程建設的關鍵,課程組教師的理論教學水平、工程實踐能力、科研水平直接關乎“電力電子技術”課程建設水平。按照校內培養(yǎng)與校外培養(yǎng)相結合、教學培養(yǎng)和科研培養(yǎng)相結合的原則,通過建立青年教師“導師制”、定期開展教學研討和教學觀摩、實行青年教師實驗室坐班制、深入工業(yè)企業(yè)生產(chǎn)實際、選派教師參加新技術培訓等措施,不斷提高青年教師教學水平、學術水平和實踐能力。

      七、結語

      電力電子技術隨著社會科學技術的發(fā)展而不斷地更新,其應用范圍越來越廣泛,不僅用于一般工業(yè),也廣泛用于交通運輸、電力、通信、計算機、新能源系統(tǒng)等?!半娏﹄娮蛹夹g”課程教學應緊跟時代變化的步伐,不斷更新和充實教學內容,改進教學方法與手段,完善實踐教學條件建設,創(chuàng)新實驗內容,將電力電子技術理論知識與實踐緊密聯(lián)系,培養(yǎng)學生的工程意識,提高實踐能力和創(chuàng)新能力。

      篇10

      教學內容和教學體系的改革是“電力電子技術”課程改革中最重要的環(huán)節(jié),直接關系到教學質量的提高,關系到應用型人才培養(yǎng)的要求。我校按照電力電子器件—電力電子變換電路—電力電子電路的微機控制技術—電力電子技術應用的思路,以電力電子器件為電路服務,電路為電力電子系統(tǒng)服務,系統(tǒng)為電力電子應用服務的理念作為教學內容設置的主導思想,以應用能力和工程素質培養(yǎng)為核心,精選理論內容,強化技術應用,及時而恰當?shù)匾腚娏﹄娮蛹夹g的新知識、新技術、新工藝。

      2.調整教學內容

      在教學設計上理論與實踐相結合,知識傳授與應用能力培養(yǎng)相結合,課內與課外相結合,講授與研討相結合。將電力電子器件、變換電路作為傳統(tǒng)內容,將電力電子技術應用作為實用內容,將最先進的自動控制生產(chǎn)線作為新技術,對典型電力電子及電氣傳動系統(tǒng)分析作為討論內容,將科研課題引入課堂作為啟發(fā)內容,通過典型案例分析,將理論與實際結合,培養(yǎng)學生解決實際問題的能力,并通過滲透行業(yè)規(guī)范、安全操作規(guī)程、文明生產(chǎn)等知識培養(yǎng)學生的工程素質。課程的講授以電力電子器件的工作原理、特性、參數(shù)、選擇、驅動與保護電路為基礎,以AC/DC、DC/AC、DC/DC、AC/AC變換電路結構、工作原理、波形分析和參數(shù)計算及電路設計為核心,以微機控制的脈寬調制技術(PWM)和各種軟開關技術作為新的控制方法和新技術,把電力電子學科的發(fā)展方向引入課堂。以電力電子器件的應用電路為教學的重點,解決實際工程問題,使學生能充分認識現(xiàn)代電力電子技術對交、直流電路的控制和變換能力,并掌握各種變換原理和方法,為后續(xù)課程“運動控制系統(tǒng)”深入學習及畢業(yè)設計打下堅實的基礎。

      二、強化實踐教學,提高學生實踐能力和創(chuàng)新能力

      1.完善實踐教學條件

      “電力電子技術”課程具有很強的工程性和實用性,而實驗是培養(yǎng)學生理論聯(lián)系實際、動手能力、嚴謹?shù)膽B(tài)度和科學研究方法的重要手段。因此,以營造真實的、先進的工程環(huán)境為目標,緊密結合工程實際應用,投入100多萬元建設和完善了電力電子技術實驗室。現(xiàn)實驗室擁有實驗設備24臺套,開發(fā)了電力電子技術仿真研究平臺,構建了電力電子技術實踐教學體系(包括課內實驗、課外實驗、課程設計、生產(chǎn)實習和畢業(yè)設計等),編制相關的教學文件。實驗室向學生全面開放,學生以團隊的形式開展自主性實驗和學科競賽培訓,并為學生提供實際工程技術資料、仿真實訓教學軟件,培養(yǎng)工程實踐應用能力。

      2.精心設計實驗內容

      課程組精心設計了實驗教學項目和內容,引導學生從問題出發(fā),逐步由基礎實驗走向設計性和綜合性實驗,再過渡到創(chuàng)新性實驗。開設了晶閘管整流、逆變的驗證性實驗,使學生對本課程的應用有初步認識;對直流斬波、交交變換以及PWM控制技術部分的實驗,則由教師給出電路參數(shù)要求,由學生自行設計主電路、驅動電路等,完成設計性實驗,培養(yǎng)學生分析問題,解決問題的能力;軟開關技術的實現(xiàn)等具有較高實用價值的實驗項目,密切聯(lián)系著當今電力電子技術發(fā)展的最前沿技術,并且在國民經(jīng)濟發(fā)展中起著重要作用。通過實驗學生了解了電力電子新技術的發(fā)展動態(tài),同時對本課程的應用領域、可以解決的問題有了更直觀感性的認識。實驗項目與科研、工程、社會應用實踐密切聯(lián)系,形成良性互動,實現(xiàn)基礎與前沿、經(jīng)典與現(xiàn)代的有機結合,有利于學生創(chuàng)新能力的培養(yǎng)和自主訓練。3.增設課程設計與調試環(huán)節(jié)開設了1周“電力電子技術”課程設計與調試實踐環(huán)節(jié),以完整的電力電子系統(tǒng)為載體,將電力電子器件選擇以及電力電子主電路、驅動電路、保護電路、檢測電路、控制電路等內容有機地結合起來,使學生通過設計、組裝、實驗和調試“四位一體”的訓練,培養(yǎng)學生的實踐能力和創(chuàng)新能力。同時,在教學中使用計算機仿真軟件Matlab/Simulink搭建各種常用電力電子電路,且可方便地調整電路的參數(shù)進行仿真,培養(yǎng)學生應用計算機處理復雜電力電子電路的能力,也為日后從事工程設計和科學研究打下良好的基礎。

      三、改進教學方法與手段,調動學生學習主動性和積極性

      在實際教學實踐中,筆者始終堅持以學生為主體、教師為主導、能力為主線的教育理念,根據(jù)課程內容合理采用不同的教學方法組織課堂教學,將“理論+實踐+應用能力”的教學模式貫穿在整個教學活動中,由傳統(tǒng)的教師滿堂灌唱獨角戲變成了教師學生共同參與的互動學習,教與學融為一體。教師有所教,學生有所學,極大地調動了學生的學習積極性,加深了學生的理解,加快了學習步伐。通過啟發(fā)教學法、案例教學法、任務驅動教學方法等,增強學生主觀能動性,活躍課堂氣氛,挖掘學生潛力,增強專業(yè)素養(yǎng),逐漸讓學生由“學會”變成“會學”,由被動變主動汲取知識。為了分析電力電子器件和電路的工作狀態(tài),使學生弄清電路中能量的變換和傳遞,筆者制作了本課程比較完善的多媒體教學課件。利用多媒體技術將實際應用中的電路和電力電子裝置做成影音資料帶到課堂上,結合典型工程實例,并把電力電子前沿的研究狀況、最新的研究成果以圖表、圖片等方式充實到教學課件中,提高學生的感性認識,激發(fā)學生學習的興趣,不斷提高教學效果及教學質量。同時,建設了本課程的教學網(wǎng)站,網(wǎng)站資料豐富,包括教學資料和典型工程實例等,學生可以在網(wǎng)上學習,教師可以在網(wǎng)上進行答疑,激發(fā)了學生學習的興趣,提高了教學效果。

      四、改革考核方式,提高學生對知識的綜合運用能力

      1.考試過程全程化

      教師根據(jù)“電力電子技術”課程性質和不同階段的教學要求,通過課堂提問、討論、平時作業(yè)、單元測驗、實際操作、撰寫報告或論文等方式加強形成性考試評價,并安排階段性考試以強化學生平時對課程教學內容的學習和掌握,弱化期末終結性考核。

      2.考核內容能力化

      考核內容圍繞應用能力和工程素質培養(yǎng)為核心這個目標設置,結合新的“電力電子技術”教學內容體系,加大電力電子器件特性分析、實際電路分析、應用案例分析、實踐技能的比例,側重考查學生對知識的綜合運用、解決問題的能力。

      3.考核方式多元化

      根據(jù)不同階段的教學要求,考核采取口試、筆試(開卷、閉卷)、開發(fā)設計相結合的形式,變單一形式的考核為多種形式的考核。

      五、組織課外科技創(chuàng)新活動,探索課內與課外培養(yǎng)的有效機制

      按照課內培養(yǎng)與課外培養(yǎng)相結合的原則,把培養(yǎng)學生實踐創(chuàng)新能力固化在教學任務中,成立了課外科技活動小組,注意引導和鼓勵學生積極參加各種科技競賽活動。依托電力電子實驗室的硬件設施,積極組織學生參加全國大學生電子設計大賽和“挑戰(zhàn)杯”競賽,以培養(yǎng)和提高學生的自學能力、實踐能力和創(chuàng)新意識。在運行中,加強課外實踐活動的組織和管理,制訂《大學生課外科技創(chuàng)新實踐活動運行管理辦法》和《實驗室開放運行管理辦法》,對大學生第二課堂教育的條件保障、激勵政策、管理辦法、評價辦法等做了明確規(guī)定,形成了有效的大學生科技創(chuàng)新實踐活動保障體系。

      六、加強青年教師培養(yǎng),提高課程組教師整體水平

      師資隊伍建設是課程建設的關鍵,課程組教師的理論教學水平、工程實踐能力、科研水平直接關乎“電力電子技術”課程建設水平。按照校內培養(yǎng)與校外培養(yǎng)相結合、教學培養(yǎng)和科研培養(yǎng)相結合的原則,通過建立青年教師“導師制”、定期開展教學研討和教學觀摩、實行青年教師實驗室坐班制、深入工業(yè)企業(yè)生產(chǎn)實際、選派教師參加新技術培訓等措施,不斷提高青年教師教學水平、學術水平和實踐能力。

      篇11

      當前,電力電子作為節(jié)能、節(jié)才、自動化、智能化、機電一體化的基礎,正朝著應用技術高頻化、硬件結構模塊化、產(chǎn)品性能綠色化的方向發(fā)展。在不遠的將來,電力電子技術將使電源技術更加成熟、經(jīng)濟、實用,實現(xiàn)高效率和高品質用電相結合。

      1.電力電子技術的發(fā)展

      現(xiàn)代電力電子技術的發(fā)展方向,是從以低頻技術處理問題為主的傳統(tǒng)電力電子學,向以高頻技術處理問題為主的現(xiàn)代電力電子學方向轉變。電力電子技術起始于五十年代末六十年代初的硅整流器件,其發(fā)展先后經(jīng)歷了整流器時代、逆變器時代和變頻器時代,并促進了電力電子技術在許多新領域的應用。八十年代末期和九十年代初期發(fā)展起來的、以功率MOSFET和IGBT為代表的、集高頻、高壓和大電流于一身的功率半導體復合器件,表明傳統(tǒng)電力電子技術已經(jīng)進入現(xiàn)代電力電子時代。

      1.1整流器時代

      大功率的工業(yè)用電由工頻(50Hz)交流發(fā)電機提供,但是大約20%的電能是以直流形式消費的,其中最典型的是電解(有色金屬和化工原料需要直流電解)、牽引(電氣機車、電傳動的內燃機車、地鐵機車、城市無軌電車等)和直流傳動(軋鋼、造紙等)三大領域。大功率硅整流器能夠高效率地把工頻交流電轉變?yōu)橹绷麟?因此在六十年代和七十年代,大功率硅整流管和晶閘管的開發(fā)與應用得以很大發(fā)展。當時國內曾經(jīng)掀起了-股各地大辦硅整流器廠的熱潮,目前全國大大小小的制造硅整流器的半導體廠家就是那時的產(chǎn)物。

      1.2逆變器時代

      七十年代出現(xiàn)了世界范圍的能源危機,交流電機變頻惆速因節(jié)能效果顯著而迅速發(fā)展。變頻調速的關鍵技術是將直流電逆變?yōu)?~100Hz的交流電。在七十年代到八十年代,隨著變頻調速裝置的普及,大功率逆變用的晶閘管、巨型功率晶體管(GTR)和門極可關斷晶閘管(GT0)成為當時電力電子器件的主角。類似的應用還包括高壓直流輸出,靜止式無功功率動態(tài)補償?shù)?。這時的電力電子技術已經(jīng)能夠實現(xiàn)整流和逆變,但工作頻率較低,僅局限在中低頻范圍內。

      1.3變頻器時代

      進入八十年代,大規(guī)模和超大規(guī)模集成電路技術的迅猛發(fā)展,為現(xiàn)代電力電子技術的發(fā)展奠定了基礎。將集成電路技術的精細加工技術和高壓大電流技術有機結合,出現(xiàn)了一批全新的全控型功率器件、首先是功率M0SFET的問世,導致了中小功率電源向高頻化發(fā)展,而后絕緣門極雙極晶體管(IGBT)的出現(xiàn),又為大中型功率電源向高頻發(fā)展帶來機遇。MOSFET和IGBT的相繼問世,是傳統(tǒng)的電力電子向現(xiàn)代電力電子轉化的標志。據(jù)統(tǒng)計,到1995年底,功率M0SFET和GTR在功率半導體器件市場上已達到平分秋色的地步,而用IGBT代替GTR在電力電子領域巳成定論。新型器件的發(fā)展不僅為交流電機變頻調速提供了較高的頻率,使其性能更加完善可靠,而且使現(xiàn)代電子技術不斷向高頻化發(fā)展,為用電設備的高效節(jié)材節(jié)能,實現(xiàn)小型輕量化,機電一體化和智能化提供了重要的技術基礎。

      2.現(xiàn)代電力電子的應用領域

      2.1計算機高效率綠色電源

      高速發(fā)展的計算機技術帶領人類進入了信息社會,同時也促進了電源技術的迅速發(fā)展。八十年代,計算機全面采用了開關電源,率先完成計算機電源換代。接著開關電源技術相繼進人了電子、電器設備領域。

      計算機技術的發(fā)展,提出綠色電腦和綠色電源。綠色電腦泛指對環(huán)境無害的個人電腦和相關產(chǎn)品,綠色電源系指與綠色電腦相關的高效省電電源,根據(jù)美國環(huán)境保護署l992年6月17日“能源之星"計劃規(guī)定,桌上型個人電腦或相關的設備,在睡眠狀態(tài)下的耗電量若小于30瓦,就符合綠色電腦的要求,提高電源效率是降低電源消耗的根本途徑。就目前效率為75%的200瓦開關電源而言,電源自身要消耗50瓦的能源。

      2.2通信用高頻開關電源

      通信業(yè)的迅速發(fā)展極大的推動了通信電源的發(fā)展。高頻小型化的開關電源及其技術已成為現(xiàn)代通信供電系統(tǒng)的主流。在通信領域中,通常將整流器稱為一次電源,而將直流-直流(DC/DC)變換器稱為二次電源。一次電源的作用是將單相或三相交流電網(wǎng)變換成標稱值為48V的直流電源。目前在程控交換機用的一次電源中,傳統(tǒng)的相控式穩(wěn)壓電源己被高頻開關電源取代,高頻開關電源(也稱為開關型整流器SMR)通過MOSFET或IGBT的高頻工作,開關頻率一般控制在50-100kHz范圍內,實現(xiàn)高效率和小型化。近幾年,開關整流器的功率容量不斷擴大,單機容量己從48V/12.5A、48V/20A擴大到48V/200A、48V/400A。

      因通信設備中所用集成電路的種類繁多,其電源電壓也各不相同,在通信供電系統(tǒng)中采用高功率密度的高頻DC-DC隔離電源模塊,從中間母線電壓(一般為48V直流)變換成所需的各種直流電壓,這樣可大大減小損耗、方便維護,且安裝、增加非常方便。一般都可直接裝在標準控制板上,對二次電源的要求是高功率密度。因通信容量的不斷增加,通信電源容量也將不斷增加。

      2.3直流-直流(DC/DC)變換器

      DC/DC變換器將一個固定的直流電壓變換為可變的直流電壓,這種技術被廣泛應用于無軌電車、地鐵列車、電動車的無級變速和控制,同時使上述控制獲得加速平穩(wěn)、快速響應的性能,并同時收到節(jié)約電能的效果。用直流斬波器代替變阻器可節(jié)約電能(20~30)%。直流斬波器不僅能起調壓的作用(開關電源),同時還能起到有效地抑制電網(wǎng)側諧波電流噪聲的作用。

      通信電源的二次電源DC/DC變換器已商品化,模塊采用高頻PWM技術,開關頻率在500kHz左右,功率密度為5W~20W/in3。隨著大規(guī)模集成電路的發(fā)展,要求電源模塊實現(xiàn)小型化,因此就要不斷提高開關頻率和采用新的電路拓撲結構,目前已有一些公司研制生產(chǎn)了采用零電流開關和零電壓開關技術的二次電源模塊,功率密度有較大幅度的提高。

      2.4不間斷電源(UPS)

      不間斷電源(UPS)是計算機、通信系統(tǒng)以及要求提供不能中斷場合所必須的一種高可靠、高性能的電源。交流市電輸入經(jīng)整流器變成直流,一部分能量給蓄電池組充電,另一部分能量經(jīng)逆變器變成交流,經(jīng)轉換開關送到負載。為了在逆變器故障時仍能向負載提供能量,另一路備用電源通過電源轉換開關來實現(xiàn)。

      現(xiàn)代UPS普遍了采用脈寬調制技術和功率M0SFET、IGBT等現(xiàn)代電力電子器件,電源的噪聲得以降低,而效率和可靠性得以提高。微處理器軟硬件技術的引入,可以實現(xiàn)對UPS的智能化管理,進行遠程維護和遠程診斷。

      目前在線式UPS的最大容量已可作到600kVA。超小型UPS發(fā)展也很迅速,已經(jīng)有0.5kVA、lkVA、2kVA、3kVA等多種規(guī)格的產(chǎn)品。

      2.5變頻器電源

      變頻器電源主要用于交流電機的變頻調速,其在電氣傳動系統(tǒng)中占據(jù)的地位日趨重要,已獲得巨大的節(jié)能效果。變頻器電源主電路均采用交流-直流-交流方案。工頻電源通過整流器變成固定的直流電壓,然后由大功率晶體管或IGBT組成的PWM高頻變換器,將直流電壓逆變成電壓、頻率可變的交流輸出,電源輸出波形近似于正弦波,用于驅動交流異步電動機實現(xiàn)無級調速。

      國際上400kVA以下的變頻器電源系列產(chǎn)品已經(jīng)問世。八十年代初期,日本東芝公司最先將交流變頻調速技術應用于空調器中。至1997年,其占有率已達到日本家用空調的70%以上。變頻空調具有舒適、節(jié)能等優(yōu)點。國內于90年代初期開始研究變頻空調,96年引進生產(chǎn)線生產(chǎn)變頻空調器,逐漸形成變頻空調開發(fā)生產(chǎn)熱點。預計到2000年左右將形成。變頻空調除了變頻電源外,還要求有適合于變頻調速的壓縮機電機。優(yōu)化控制策略,精選功能組件,是空調變頻電源研制的進一步發(fā)展方向。

      2.6高頻逆變式整流焊機電源

      高頻逆變式整流焊機電源是一種高性能、高效、省材的新型焊機電源,代表了當今焊機電源的發(fā)展方向。由于IGBT大容量模塊的商用化,這種電源更有著廣闊的應用前景。

      逆變焊機電源大都采用交流-直流-交流-直流(AC-DC-AC-DC)變換的方法。50Hz交流電經(jīng)全橋整流變成直流,IGBT組成的PWM高頻變換部分將直流電逆變成20kHz的高頻矩形波,經(jīng)高頻變壓器耦合,整流濾波后成為穩(wěn)定的直流,供電弧使用。

      由于焊機電源的工作條件惡劣,頻繁的處于短路、燃弧、開路交替變化之中,因此高頻逆變式整流焊機電源的工作可靠性問題成為最關鍵的問題,也是用戶最關心的問題。采用微處理器做為脈沖寬度調制(PWM)的相關控制器,通過對多參數(shù)、多信息的提取與分析,達到預知系統(tǒng)各種工作狀態(tài)的目的,進而提前對系統(tǒng)做出調整和處理,解決了目前大功率IGBT逆變電源可靠性。

      國外逆變焊機已可做到額定焊接電流300A,負載持續(xù)率60%,全載電壓60~75V,電流調節(jié)范圍5~300A,重量29kg。

      2.7大功率開關型高壓直流電源

      大功率開關型高壓直流電源廣泛應用于靜電除塵、水質改良、醫(yī)用X光機和CT機等大型設備。電壓高達50~l59kV,電流達到0.5A以上,功率可達100kW。

      自從70年代開始,日本的一些公司開始采用逆變技術,將市電整流后逆變?yōu)?kHz左右的中頻,然后升壓。進入80年代,高頻開關電源技術迅速發(fā)展。德國西門子公司采用功率晶體管做主開關元件,將電源的開關頻率提高到20kHz以上。并將干式變壓器技術成功的應用于高頻高壓電源,取消了高壓變壓器油箱,使變壓器系統(tǒng)的體積進一步減小。

      國內對靜電除塵高壓直流電源進行了研制,市電經(jīng)整流變?yōu)橹绷?采用全橋零電流開關串聯(lián)諧振逆變電路將直流電壓逆變?yōu)楦哳l電壓,然后由高頻變壓器升壓,最后整流為直流高壓。在電阻負載條件下,輸出直流電壓達到55kV,電流達到15mA,工作頻率為25.6kHz。

      2.8電力有源濾波器

      傳統(tǒng)的交流-直流(AC-DC)變換器在投運時,將向電網(wǎng)注入大量的諧波電流,引起諧波損耗和干擾,同時還出現(xiàn)裝置網(wǎng)側功率因數(shù)惡化的現(xiàn)象,即所謂“電力公害”,例如,不可控整流加電容濾波時,網(wǎng)側三次諧波含量可達(70~80)%,網(wǎng)側功率因數(shù)僅有0.5~0.6。

      電力有源濾波器是一種能夠動態(tài)抑制諧波的新型電力電子裝置,能克服傳統(tǒng)LC濾波器的不足,是一種很有發(fā)展前途的諧波抑制手段。濾波器由橋式開關功率變換器和具體控制電路構成。與傳統(tǒng)開關電源的區(qū)別是:(l)不僅反饋輸出電壓,還反饋輸入平均電流;(2)電流環(huán)基準信號為電壓環(huán)誤差信號與全波整流電壓取樣信號之乘積。

      2.9分布式開關電源供電系統(tǒng)

      分布式電源供電系統(tǒng)采用小功率模塊和大規(guī)??刂萍呻娐纷骰静考?利用最新理論和技術成果,組成積木式、智能化的大功率供電電源,從而使強電與弱電緊密結合,降低大功率元器件、大功率裝置(集中式)的研制壓力,提高生產(chǎn)效率。

      八十年代初期,對分布式高頻開關電源系統(tǒng)的研究基本集中在變換器并聯(lián)技術的研究上。八十年代中后期,隨著高頻功率變換技術的迅述發(fā)展,各種變換器拓撲結構相繼出現(xiàn),結合大規(guī)模集成電路和功率元器件技術,使中小功率裝置的集成成為可能,從而迅速地推動了分布式高頻開關電源系統(tǒng)研究的展開。自八十年代后期開始,這一方向已成為國際電力電子學界的研究熱點,論文數(shù)量逐年增加,應用領域不斷擴大。

      分布供電方式具有節(jié)能、可靠、高效、經(jīng)濟和維護方便等優(yōu)點。已被大型計算機、通信設備、航空航天、工業(yè)控制等系統(tǒng)逐漸采納,也是超高速型集成電路的低電壓電源(3.3V)的最為理想的供電方式。在大功率場合,如電鍍、電解電源、電力機車牽引電源、中頻感應加熱電源、電動機驅動電源等領域也有廣闊的應用前景。

      3.高頻開關電源的發(fā)展趨勢

      在電力電子技術的應用及各種電源系統(tǒng)中,開關電源技術均處于核心地位。對于大型電解電鍍電源,傳統(tǒng)的電路非常龐大而笨重,如果采用高頓開關電源技術,其體積和重量都會大幅度下降,而且可極大提高電源利用效率、節(jié)省材料、降低成本。在電動汽車和變頻傳動中,更是離不開開關電源技術,通過開關電源改變用電頻率,從而達到近于理想的負載匹配和驅動控制。高頻開關電源技術,更是各種大功率開關電源(逆變焊機、通訊電源、高頻加熱電源、激光器電源、電力操作電源等)的核心技術。

      3.1高頻化

      理論分析和實踐經(jīng)驗表明,電氣產(chǎn)品的變壓器、電感和電容的體積重量與供電頻率的平方根成反比。所以當我們把頻率從工頻50Hz提高到20kHz,提高400倍的話,用電設備的體積重量大體下降至工頻設計的5~l0%。無論是逆變式整流焊機,還是通訊電源用的開關式整流器,都是基于這一原理。同樣,傳統(tǒng)“整流行業(yè)”的電鍍、電解、電加工、充電、浮充電、電力合閘用等各種直流電源也可以根據(jù)這一原理進行改造,成為“開關變換類電源”,其主要材料可以節(jié)約90%或更高,還可節(jié)電30%或更多。由于功率電子器件工作頻率上限的逐步提高,促使許多原來采用電子管的傳統(tǒng)高頻設備固態(tài)化,帶來顯著節(jié)能、節(jié)水、節(jié)約材料的經(jīng)濟效益,更可體現(xiàn)技術含量的價值。

      3.2模塊化

      模塊化有兩方面的含義,其一是指功率器件的模塊化,其二是指電源單元的模塊化。我們常見的器件模塊,含有一單元、兩單元、六單元直至七單元,包括開關器件和與之反并聯(lián)的續(xù)流二極管,實質上都屬于“標準”功率模塊(SPM)。近年,有些公司把開關器件的驅動保護電路也裝到功率模塊中去,構成了“智能化”功率模塊(IPM),不但縮小了整機的體積,更方便了整機的設計制造。實際上,由于頻率的不斷提高,致使引線寄生電感、寄生電容的影響愈加嚴重,對器件造成更大的電應力(表現(xiàn)為過電壓、過電流毛刺)。為了提高系統(tǒng)的可靠性,有些制造商開發(fā)了“用戶專用”功率模塊(ASPM),它把一臺整機的幾乎所有硬件都以芯片的形式安裝到一個模塊中,使元器件之間不再有傳統(tǒng)的引線連接,這樣的模塊經(jīng)過嚴格、合理的熱、電、機械方面的設計,達到優(yōu)化完美的境地。它類似于微電子中的用戶專用集成電路(ASIC)。只要把控制軟件寫入該模塊中的微處理器芯片,再把整個模塊固定在相應的散熱器上,就構成一臺新型的開關電源裝置。由此可見,模塊化的目的不僅在于使用方便,縮小整機體積,更重要的是取消傳統(tǒng)連線,把寄生參數(shù)降到最小,從而把器件承受的電應力降至最低,提高系統(tǒng)的可靠性。另外,大功率的開關電源,由于器件容量的限制和增加冗余提高可靠性方面的考慮,一般采用多個獨立的模塊單元并聯(lián)工作,采用均流技術,所有模塊共同分擔負載電流,一旦其中某個模塊失效,其它模塊再平均分擔負載電流。這樣,不但提高了功率容量,在有限的器件容量的情況下滿足了大電流輸出的要求,而且通過增加相對整個系統(tǒng)來說功率很小的冗余電源模塊,極大的提高系統(tǒng)可靠性,即使萬一出現(xiàn)單模塊故障,也不會影響系統(tǒng)的正常工作,而且為修復提供充分的時間。

      3.3數(shù)字化

      在傳統(tǒng)功率電子技術中,控制部分是按模擬信號來設計和工作的。在六、七十年代,電力電子技術完全是建立在模擬電路基礎上的。但是,現(xiàn)在數(shù)字式信號、數(shù)字電路顯得越來越重要,數(shù)字信號處理技術日趨完善成熟,顯示出越來越多的優(yōu)點:便于計算機處理控制、避免模擬信號的畸變失真、減小雜散信號的干擾(提高抗干擾能力)、便于軟件包調試和遙感遙測遙調,也便于自診斷、容錯等技術的植入。所以,在八、九十年代,對于各類電路和系統(tǒng)的設計來說,模擬技術還是有用的,特別是:諸如印制版的布圖、電磁兼容(EMC)問題以及功率因數(shù)修正(PFC)等問題的解決,離不開模擬技術的知識,但是對于智能化的開關電源,需要用計算機控制時,數(shù)字化技術就離不開了。

      3.4綠色化

      電源系統(tǒng)的綠色化有兩層含義:首先是顯著節(jié)電,這意味著發(fā)電容量的節(jié)約,而發(fā)電是造成環(huán)境污染的重要原因,所以節(jié)電就可以減少對環(huán)境的污染;其次這些電源不能(或少)對電網(wǎng)產(chǎn)生污染,國際電工委員會(IEC)對此制定了一系列標準,如IEC555、IEC917、IECl000等。事實上,許多功率電子節(jié)電設備,往往會變成對電網(wǎng)的污染源:向電網(wǎng)注入嚴重的高次諧波電流,使總功率因數(shù)下降,使電網(wǎng)電壓耦合許多毛刺尖峰,甚至出現(xiàn)缺角和畸變。20世紀末,各種有源濾波器和有源補償器的方案誕生,有了多種修正功率因數(shù)的方法。這些為2l世紀批量生產(chǎn)各種綠色開關電源產(chǎn)品奠定了基礎。

      現(xiàn)代電力電子技術是開關電源技術發(fā)展的基礎。隨著新型電力電子器件和適于更高開關頻率的電路拓撲的不斷出現(xiàn),現(xiàn)代電源技術將在實際需要的推動下快速發(fā)展。在傳統(tǒng)的應用技術下,由于功率器件性能的限制而使開關電源的性能受到影響。為了極大發(fā)揮各種功率器件的特性,使器件性能對開關電源性能的影響減至最小,新型的電源電路拓撲和新型的控制技術,可使功率開關工作在零電壓或零電流狀態(tài),從而可大大的提高工作頻率,提高開關電源工作效率,設計出性能優(yōu)良的開關電源。

      總而言之,電力電子及開關電源技術因應用需求不斷向前發(fā)展,新技術的出現(xiàn)又會使許多應用產(chǎn)品更新?lián)Q代,還會開拓更多更新的應用領域。開關電源高頻化、模塊化、數(shù)字化、綠色化等的實現(xiàn),將標志著這些技術的成熟,實現(xiàn)高效率用電和高品質用電相結合。這幾年,隨著通信行業(yè)的發(fā)展,以開關電源技術為核心的通信用開關電源,僅國內有20多億人民幣的市場需求,吸引了國內外一大批科技人員對其進行開發(fā)研究。開關電源代替線性電源和相控電源是大勢所趨,因此,同樣具有幾十億產(chǎn)值需求的電力操作電源系統(tǒng)的國內市場正在啟動,并將很快發(fā)展起來。還有其它許多以開關電源技術為核心的專用電源、工業(yè)電源正在等待著人們去開發(fā)。

      參考文獻

      (l)林渭勛:淺談半導體高頻電力電子技術,電力電子技術選編,浙江大學,384-390,1992

      (2)季幼章:迎接知識經(jīng)濟時代,發(fā)展電源技術應用,電源技術應用,N0.2,l998