時間:2023-04-01 10:31:15
序論:速發(fā)表網(wǎng)結(jié)合其深厚的文秘經(jīng)驗,特別為您篩選了11篇納米材料論文范文。如果您需要更多原創(chuàng)資料,歡迎隨時與我們的客服老師聯(lián)系,希望您能從中汲取靈感和知識!
納米發(fā)展小史
1959年,著名物理學家、諾貝爾獎獲得者理查德。費曼預言,人類可以用小的機器制作更小的機器,最后實現(xiàn)根據(jù)人類意愿逐個排列原子、制造產(chǎn)品,這是關(guān)于納米科技最早的夢想。
1991年,美國科學家成功地合成了碳納米管,并發(fā)現(xiàn)其質(zhì)量僅為同體積鋼的1/6,強度卻是鋼的10倍,因此稱之為超級纖維.這一納米材料的發(fā)現(xiàn)標志人類對材料性能的發(fā)掘達到了新的高度。1999年,納米產(chǎn)品的年營業(yè)額達到500億美元。
什么是納米材料
納米(nm)是長度單位,1納米是10-9米(十億分之一米),對宏觀物質(zhì)來說,納米是一個很小的單位,不如,人的頭發(fā)絲的直徑一般為7000-8000nm,人體紅細胞的直徑一般為3000-5000nm,一般病毒的直徑也在幾十至幾百納米大小,金屬的晶粒尺寸一般在微米量級;對于微觀物質(zhì)如原子、分子等以前用埃來表示,1埃相當于1個氫原子的直徑,1納米是10埃。
一般認為納米材料應該包括兩個基本條件:一是材料的特征尺寸在1-100nm之間,二是材料此時具有區(qū)別常規(guī)尺寸材料的一些特殊物理化學特性。
1、納米技術(shù)在防腐中的應用
由加拿大萬達科技(無錫)有限公司與全國涂料工業(yè)信息中心聯(lián)合舉辦的無毒高效防銹顏料及其在防腐蝕涂料中的應用研討會近日在無錫召開。
中國工程院院士、裝甲兵工程學院徐濱士教授,上海交通大學李國萊教授,中化建常州涂料化工研究院錢伯榮總工等業(yè)內(nèi)知名人士分別在會上作了報告,與會者共同探討了納米技術(shù)在防銹顏料中及涂料中的應用、無毒高效防銹顏料在防腐蝕涂料中的應用以及新型防銹涂料和防銹試驗方法發(fā)展等課題。
徐院士就當前納米技術(shù)的發(fā)展情況作了簡單介紹,他指出:納米技術(shù)的研究對人類的發(fā)展、世界的進步起著至關(guān)重要的作用,誰掌握了納米技術(shù),誰就站在了世界的前列。我國納米技術(shù)的研究因起步較早,現(xiàn)基本能與世界保持同步,在某些領(lǐng)域甚至超過世界同行業(yè)。
作為國內(nèi)表面處理這一課題的領(lǐng)頭人,徐院士重點談了納米技術(shù)對防銹顏料及涂料發(fā)展的促進作用。他說,此前我國防銹顏料的開發(fā)整體水平落后于西方發(fā)達國家,仍然以紅丹、鉻酸鹽、鐵系顏料、磷酸鋅等傳統(tǒng)防銹顏料為主。紅丹因其污染嚴重,對人體的傷害很大,目前已被許多國家相繼淘汰和禁止使用;磷酸鋅防銹顏料雖然無毒,但由于改性技術(shù)原因,性能并不理想,加上價格太貴,難以推廣;而三聚磷酸鋁也因價格原因未能大量應用。國外公司如美國的Halox、Sherwin-williams、Mineralpigments、德國的Hrubach、法國的SNCZ、英國的BritishPetroleum、日本的帝國化工公司均推出了一系列無毒防銹顏料,有的性能不錯,甚至已可與鉻酸鹽相比,但均因價格太高,國內(nèi)尚未引進。我國防銹涂料業(yè)亟待一種無毒無害、性能優(yōu)異而又價格低廉的防銹顏料來提升防銹涂料產(chǎn)品的整體水平,增強行業(yè)的國際競爭力。
中化建常州涂料化工研究院高級工程師沈海鷹代表常州涂料院,在題為《無毒高效防銹顏料在防腐蝕涂料中的應用》報告中,詳細介紹了復合鐵鈦醇酸防銹漆及復合鐵鈦環(huán)氧防銹漆的生產(chǎn)工藝、生產(chǎn)或使用注意事項、防銹漆技術(shù)指標及其與鐵紅、紅丹同類防銹漆主要性能的比較。
在紅丹價格一路攀升的今天,這一信息無疑給各涂料生產(chǎn)廠商提供了巨大的參考價值,會場氣氛十分熱烈,與會者紛紛提出各種問題。萬達科技(無錫)有限公司總工程師李家權(quán)先生就復合鐵鈦防銹顏料的防銹機理、生產(chǎn)工藝、載體粉的選擇、產(chǎn)品各項性能指標及納米材料的預處理方法等一一做了詳細介紹。
目前產(chǎn)品已通過國家涂料質(zhì)量監(jiān)督檢測中心、鐵道部產(chǎn)品質(zhì)量監(jiān)督檢驗中心車輛檢驗站、機械科學院武漢材料保護研究所等國內(nèi)多家權(quán)威機構(gòu)的分析和檢測,同時還經(jīng)過加拿大國家涂料信息中心等國外權(quán)威機構(gòu)的技術(shù)分析,結(jié)果表明其具有目前國內(nèi)外同類產(chǎn)品無可比擬的防銹性能和環(huán)保優(yōu)勢,是防銹涂料領(lǐng)域劃時代產(chǎn)品,為此獲得了中國專利技術(shù)博覽會金獎.復合鐵鈦粉及其防銹漆通過國家權(quán)威機構(gòu)的鑒定后已在多個工業(yè)領(lǐng)域得到應用,并已由總裝備部作為重點項目在全軍部分裝備上全面推廣使用。
本次會議的成功召開,標志著我國防銹涂料產(chǎn)業(yè)新一輪的變革即將開始,它掀開了我國防銹涂料朝高品質(zhì)、高技術(shù)含量、高效益及全環(huán)保型發(fā)展的嶄新一頁。其帶來的經(jīng)濟效益、社會效益不可估量。這是新型防銹顏料向傳統(tǒng)防銹顏料宣戰(zhàn)的開始,也吹響了我國防銹涂料業(yè)向高端防銹涂料市場發(fā)起沖擊的號角2、納米材料在涂料中應用展前景預測
據(jù)估算,全球納米技術(shù)的年產(chǎn)值已達到500億美元。目前,發(fā)達國家政府和大的企業(yè)紛紛啟動了發(fā)展納米技術(shù)和納米計劃的研究計劃。美國將納米技術(shù)視為下一次工業(yè)革命的核心,2001年年初把納米技術(shù)列為國家戰(zhàn)略目標,在納米科技基礎(chǔ)研究方面的投資,從1997年的1億多美元增加到2001年近5億美元,準備像微電子技術(shù)那樣在這一領(lǐng)域獨占領(lǐng)先地位。日本也設(shè)立了納米材料中心,把納米技術(shù)列入新五年科技基本計劃的研究開發(fā)重點,將以納米技術(shù)為代表的新材料技術(shù)與生命科學、信息通信、環(huán)境保護等并列為四大重點發(fā)展領(lǐng)域。德國也把納米材料列入21世紀科研的戰(zhàn)略領(lǐng)域,全國有19家機構(gòu)專門建立了納米技術(shù)研究網(wǎng)。在人類進入21世紀之際,納米科學技術(shù)的發(fā)展,對社會的發(fā)展和生存環(huán)境改善及人體健康的保障都將做出更大的貢獻。從某種意義上說,21世紀將是一個納米世紀。
由于表面納米技術(shù)運用面廣、產(chǎn)業(yè)化周期短、附加值高,所形成的高新技術(shù)和高技術(shù)產(chǎn)品、以及對傳統(tǒng)產(chǎn)業(yè)和產(chǎn)品的改造升級,產(chǎn)業(yè)化市場前景極好。
在納米功能和結(jié)構(gòu)材料方面,將充分利用納米材料的異常光學特性、電學特性、磁學特性、力學特性、敏感特性、催化與化學特性等開發(fā)高技術(shù)新產(chǎn)品,以及對傳統(tǒng)材料改性;將重點突破各類納米功能和結(jié)構(gòu)材料的產(chǎn)業(yè)化關(guān)鍵技術(shù)、檢測技術(shù)和表征技術(shù)。多功能的納米復合材料、高性能的納米硬質(zhì)合金等為化工、建材、輕工、冶金等行業(yè)的跨越式發(fā)展提供了廣泛的機遇。預期十五期間,各類納米材料的產(chǎn)業(yè)化可能形成一批大型企業(yè)或企業(yè)集團,將對國民經(jīng)濟產(chǎn)生重要影響;納米技術(shù)的應用逐漸滲透到涉及國計民生的各個領(lǐng)域,將產(chǎn)生新的經(jīng)濟增長點。
納米技術(shù)在涂料行業(yè)的應用和發(fā)展,促使涂料更新?lián)Q代,為涂料成為真正的綠色環(huán)保產(chǎn)品開創(chuàng)了突破性的新紀元。
我國每年房屋竣工面積約為18億平方米,年增長速度大約為3%。18億平方米的建筑若全部采用建筑涂料裝飾則總共需建筑涂料近300萬噸,約200~300億元的市場。目前,我國建筑涂料年產(chǎn)量僅60多萬噸,世界現(xiàn)在涂料年總產(chǎn)量為2500萬噸,每人每年消耗4千克,為發(fā)達國家的1/10,中國人年均涂料消費只有1.5千克。因而,建筑涂料具有十分廣闊的發(fā)展前景。
1.2碳納米洋蔥碳納米洋蔥是1992年Ugarte在顯微鏡中通過強電子束照射碳灰而發(fā)現(xiàn)的[9]。碳納米洋蔥的微觀形貌為多層石墨構(gòu)成的洋蔥狀顆粒,尺寸在納米數(shù)量級。迄今為止,人們已經(jīng)發(fā)展了多種制備碳納米洋蔥的方法,如電子束照射法、離子注入法、電弧放電法、碳煙灰的沖擊波處理法及等離子體噴頭上的碳沉積法等。電子束照射法是用具有一定能量的電子束照射含碳原料,使其汽化成碳原子和原子團,然后再重新結(jié)合、形成新的碳納米材料的方法。一般情況下,電子束照射法制得的碳納米洋蔥呈球形,對稱性好,形成的殼層在3~10層之間[8]。Sano等[9]采用水中電弧放電法,制得了碳納米洋蔥;表征結(jié)果表明,制得的碳納米洋蔥直徑在4~36nm之間,石墨化程度不高,具有較大的表面積(984.3m2/g)。
1.3碳納米籠碳納米籠的結(jié)構(gòu)和形貌多樣,具有優(yōu)異的理化性質(zhì)。籠狀結(jié)構(gòu)的碳納米顆粒之間存在空隙,很方便填充金屬顆?;蚱渌肿?,制備成具有特殊性質(zhì)的納米復合材料。由于范德華力的作用,碳納米顆粒往往團聚嚴重,不易分散,使得其性質(zhì)和應用研究受到限制。因此,制備分散性好、性質(zhì)優(yōu)異的碳納米籠顆粒具有重要的意義。碳納米籠的制備方法包括CVD法、超臨界流體法、模板法、激光蒸發(fā)法及溶劑熱法等。Li等[10]在超臨界二氧化碳中,使用二甲苯為原料,在Co/Mo催化劑上沉積制得了碳納米籠。表征結(jié)果表明,制得的碳納米籠的表面積和孔體積的大小與反應溫度和壓力有關(guān)。在650~750℃之間制得的碳納米籠直徑在10~60nm之間;在650℃和10.34MPa的條件下,制得的碳納米籠的孔體積為5.8cm3/g,表面積為1240m2/g。Wang等[11]使用乙醇和Fe(CO)5為原料,采用模板法,在600~900℃條件下,制得了碳納米籠。研究結(jié)果表明,制得的碳納米籠的直徑在30~50nm之間,表面積在400~800m2/g之間;其可以分散在水中,幾個月都不會團聚。
2應用
2.1催化劑載體碳元素以其特有的成鍵形式(sp、sp2和sp3)構(gòu)成了形貌和結(jié)構(gòu)多樣的納米顆粒材料,這類碳納米材料獨特的結(jié)構(gòu)和奇異的物理化學性質(zhì)賦予其廣泛的用途。尤其是碳納米籠顆粒,在眾多的應用中作為催化劑載體而成為催化領(lǐng)域的研究熱點之一。Yun等[12]將鉑催化劑負載在中空碳納米球顆粒上,并且催化烯烴加氫反應。結(jié)果表明,中空碳納米球顆粒負載催化劑的催化效果要高于活性炭;考察了碳納米顆粒的結(jié)構(gòu)對負載鉑催化劑催化環(huán)己烷脫氫反應性能的影響。杜建平等[13]采用爆炸輔助化學氣相沉積法制得了石墨化程度不高,類似球形的碳納米顆粒??疾炝似湄撦d鉬催化劑含量對環(huán)己烷脫氫反應的催化性能。結(jié)果表明,鉬含量對環(huán)己烷脫氫催化反應有較大影響。鉬含量15%時,催化性能最佳。
2.2生物醫(yī)藥與其它維數(shù)的納米材料相比,零維納米材料除了尺寸小之外,更重要的是其具有較大的比表面積,這使得其表面活性也有所增大。碳納米顆粒直徑越小,處于表面的原子比例就越大,反應活性越高,其對生物組織、細胞傷害就越大;直徑越大,其在生物體內(nèi)的免疫性越強,容易遭到免疫系統(tǒng)的攻擊,從而被器官捕獲和降解。周兆熊等[14]采用高壓均質(zhì)方法,使用全氟碳納米顆粒荷載藥物地塞米松磷酸鈉或醋酸地塞米松。研究結(jié)果表明,荷載地塞米松磷酸鈉和醋酸地塞米松的全氟碳納米顆粒直徑分別為(224±6)和(236±9)nm。荷載地塞米松磷酸鈉和醋酸地塞米松的包封率分別為(66.4±1.0)%和(95.3±1.3)%,首日溶出比率分別為77.2%和23.6%。與不用全氟碳納米顆粒荷載相比,全氟碳納米顆粒荷載順磁性造影劑釓噴酸葡胺可增加信號強16%。因此,全氟碳納米顆粒荷載藥物具有較好的緩釋性,能增加磁共振造影劑的信號強度,從而提高其檢測靈敏性。
2.3磁性材料安玉良等[15]采用控溫還原炭化過程,利用纖維素和硝酸鐵為原料,制得了包裹金屬的碳納米顆粒。表征結(jié)果表明,該碳納米顆粒直徑分布在20~90nm之間;具有對電磁波的電損耗和磁損耗效應;電損耗角正切值在1.1~1.2之間,磁損耗角正切值在0.45~0.70之間;電損耗角正切值隨著頻率的增加而增加;這些結(jié)果表明碳包覆鐵納米顆??梢宰鳛檩^好的電磁材料。陳進等[16]采用電弧放電法制得了包裹銅粒子的碳納米顆粒,考察了該碳納米顆粒的導電性能。結(jié)果表明,該碳納米顆粒具有核殼結(jié)構(gòu),內(nèi)部為銅粒子核,外部為碳層且石墨化程度較高。該包裹銅粒子的碳納米顆粒的導電性隨著銅含量的增加而增加。當銅含量為80(wt)%時出現(xiàn)突躍。
2.4發(fā)光材料熒光碳納米顆粒是一類較為理想的熒光標記和檢測材料。因此,目前制備和研究熒光碳納米顆粒成為一項受到廣泛關(guān)注的課題。郭艷等[17]在恒定電壓下,利用鄰苯二甲酸氫鉀、乙二胺四乙酸二鈉、檸檬酸鹽為電解液,采用電化學刻蝕石墨的方法,制得了帶有熒光的碳納米顆粒。與鄰苯二甲酸氫鉀和檸檬酸鹽的電解液相比,同濃度的乙二胺四乙酸二鈉為電解液制得的碳納米顆粒的熒光最強。熒光強度隨某種電解液濃度的減小而降低。研究表明,具有sp2結(jié)構(gòu)的碳簇可能是碳納米顆粒的發(fā)光中心。Bourlinos等[18]利用有機物碳化的方法制得了不具有晶體結(jié)構(gòu)的,直徑小于10nm的碳納米顆粒,其可以發(fā)出多種可見光,得到了3%的熒光量子產(chǎn)率。
1微乳反應器原理
在微乳體系中,用來制備納米粒子的一般是W/O型體系,該體系一般由有機溶劑、水溶液?;钚詣?、助表面活性劑4個組分組成。常用的有機溶劑多為C6~C8直鏈烴或環(huán)烷烴;表面活性劑一般有AOT[2一乙基己基]磺基琥珀酸鈉]。AOS、SDS(十二烷基硫酸鈉)、SDBS(十六烷基磺酸鈉)陰離子表面活性劑、CTAB(十六烷基三甲基溴化銨)陽離子表面活性劑、TritonX(聚氧乙烯醚類)非離子表面活性劑等;助表面活性劑一般為中等碳鏈C5~C8的脂肪酸。
W/O型微乳液中的水核中可以看作微型反應器(Microreactor)或稱為納米反應器,反應器的水核半徑與體系中水和表面活性劑的濃度及種類有直接關(guān)系,若令W=[H2O/[表面活性劑],則由微乳法制備的納米粒子的尺寸將會受到W的影響。利用微膠束反應器制備納米粒子時,粒子形成一般有三種情況(可見圖1、2、3所示)。
(l)將2個分別增溶有反應物A、B的微乳液混合,此時由于膠團顆粒間的碰撞,發(fā)生了水核內(nèi)物質(zhì)的相互交換或物質(zhì)傳遞,引起核內(nèi)的化學反應。由于水核半徑是固定的,不同水核內(nèi)的晶核或粒子之間的物質(zhì)交換不能實現(xiàn),所以水核內(nèi)粒子尺寸得到了控制,例如由硝酸銀和氯化鈉反應制備氯化鈉納粒。
(2)一種反應物在增溶的水核內(nèi),另一種以水溶液形式(例如水含肼和硼氫化鈉水溶液)與前者混合。水相內(nèi)反應物穿過微乳液界面膜進入水核內(nèi)與另一反應物作用產(chǎn)生晶核并生長,產(chǎn)物粒子的最終粒徑是由水核尺寸決定的。例如,鐵,鎳,鋅納米粒子的制備就是采用此種體系。
(3)一種反應物在增溶的水核內(nèi),另一種為氣體(如O2、NH3,CO2),將氣體通入液相中,充分混合使兩者發(fā)生反應而制備納米顆粒,例如,Matson等用超臨界流體一反膠團方法在AOT一丙烷一H2O體系中制備用Al(OH)3膠體粒子時,采用快速注入干燥氨氣方法得到球形均分散的超細Al(OH)3粒子,在實際應用當中,可根據(jù)反應特點選用相應的模式。
2微乳反應器的形成及結(jié)構(gòu)
和普通乳狀液相比,盡管在分散類型方面微乳液和普通乳狀液有相似之處,即有O/W型和W/O型,其中W/O型可以作為納米粒子制備的反應器。但是微乳液是一種熱力學穩(wěn)定的體系,它的形成是自發(fā)的,不需要外界提供能量。正是由于微乳液的形成技術(shù)要求不高,并且液滴粒度可控,實驗裝置簡單且操作容易,所以微乳反應器作為一種新的超細顆粒的制備方法得到更多的研究和應用。
2.1微乳液的形成機理
Schulman和Prince等提出瞬時負界面張力形成機理。該機理認為:油/水界面張力在表面活性劑存在下將大大降低,一般為l~10mN/m,但這只能形成普通乳狀液。要想形成微乳液必須加入助表面活性劑,由于產(chǎn)生混合吸附,油/水界面張力迅速降低達10-3~10-5mN/m,甚至瞬時負界面張力Y<0。但是負界面張力是不存在的,所以體系將自發(fā)擴張界面,表面活性劑和助表面活性劑吸附在油/水界面上,直至界面張力恢復為零或微小的正值,這種瞬時產(chǎn)生的負界面張力使體系形成了微乳液。若是發(fā)生微乳液滴的聚結(jié),那么總的界面面積將會縮小,復又產(chǎn)生瞬時界面張力,從而對抗微乳液滴的聚結(jié)。對于多組分來講,體系的Gibbs公式可表示為:
--dγ=∑Гidui=∑ГiRTdlnCi
(式中γ為油/水界面張力,Гi為i組分在界面的吸附量,ui為I組分的化學位,Ci為i組分在體相中的濃度)
上式表明,如果向體系中加入一種能吸附于界面的組分(Г>0),一般中等碳鏈的醇具有這一性質(zhì),那么體系中液滴的表面張力進一步下降,甚至出現(xiàn)負界面張力現(xiàn)象,從而得到穩(wěn)定的微乳液。不過在實際應用中,對一些雙鏈離子型表面活性劑如AOT和非離子表面活性劑則例外,它們在無需加入助表面活性劑的情況下也能形成穩(wěn)定的微乳體系,這和它們的特殊結(jié)構(gòu)有關(guān)。2.2微乳液的結(jié)構(gòu)
RObbins,MitChell和Ninham從雙親物聚集體的分子的幾何排列角度考慮,提出了界面膜中排列的幾何排列理論模型,成功地解釋了界面膜的優(yōu)先彎曲和微乳液的結(jié)構(gòu)問題。
目前,有關(guān)微乳體系結(jié)構(gòu)和性質(zhì)的研究方法獲得了較大的發(fā)展,較早采用的有光散射、雙折射、電導法、沉降法、離心沉降和粘度測量法等;較新的有小角中子散射和X射線散射、電子顯微鏡法。正電子湮滅、靜態(tài)和動態(tài)熒光探針法、NMR、ESR(電子自旅共振)、超聲吸附和電子雙折射等。
3微乳反應器的應用——納米顆粒材料的制備
3.1納米催化材料的制備
利用W/O型微乳體系可以制備多相反應催化劑,Kishida。等報道了用該方法制備
Rh/SiO2和Rh/ZrO2載體催化劑的新方法。采用NP-5/環(huán)已烷/氯化銠微乳體系,非離子表面活性劑NP-5的濃度為0.5mol/L,氯化銠在溶液中濃度為0.37mol/L,水相體積分數(shù)為0.11。25℃時向體系中加入還原劑水含肼并加入稀氨水,然后加入正丁基醇鋯的環(huán)乙烷溶液,強烈攪拌加熱到40℃而生成淡黃色沉淀,離心分離和乙醇洗滌,80℃干燥并在500℃的灼燒3h,450℃下用氧氣還原2h,催化劑命名為“ME”。通過性能檢測,該催化劑活性遠比采用浸漬法制得的高。
3.2無機化合物納粒的制備
利用W/O型微乳體系也可以制備無機化合物,鹵化銀在照像底片乳膠中應用非常重要,尤其是納米級鹵化銀粒子。用水一AOT一烷烴微乳體系合成了AgCl和AgBr納米粒子,AOT濃度為0.15mol/L,第一個微乳體系中硝酸銀為0.4mol/L,第二個微乳體系中NaCl或NaBr為0.4mol/L,混合兩微乳液并攪拌,反應生成AgCl或AgBr納米顆粒。
又以制備CaCO3為例,微乳體系中含Ca(OH)2,向體系中通入CO2氣體,CO2溶入微乳液并擴散,膠束中發(fā)生反應生成CaCO3顆粒,產(chǎn)物粒徑為80~100nm。
3.3聚合物納粒的制備
利用W/O型微乳體系可以制備有機聚丙烯酸胺納粒。在20mlAOTt——正己烷溶液中加入0.1mlN-N一亞甲基雙丙烯酰胺(2mg/rnl)和丙烯酰胺(8mg/ml)的混合物,加入過硫酸銨作為引發(fā)劑,在氮氣保護下聚合,所得產(chǎn)物單分散性較好。
3.4金屬單質(zhì)和合金的制備
利用W/O型微乳體系可以制備金屬單質(zhì)和合金,例如在AOT-H2O-n—heptane體系中,一種反相微膠束中含有0.lmol/LNiCl2,另一反相微膠束中含有0.2mol/LNaBH4,混合攪拌,產(chǎn)物經(jīng)分離、干燥并在300℃惰性氣體保護下結(jié)晶可得鎳納米顆粒。在某微乳體系中含有0.0564mol/L,F(xiàn)eC12和0.2mol/LNiCl2,另一體系中含有0.513mol/LNaBH4溶液,混合兩微乳體系進行反應,產(chǎn)物經(jīng)庚烷、丙酮洗滌,可以得到Fe-Ni合金微粒(r=30nm)。
3.5磁性氧化物顆粒的制備
利用W/O型微乳體系可以制備氧化物納米粒子,例如在AOT-H2O-n-h(huán)eptane體系中,一種乳液中含有0.15mol/LFeCl2和0.3mol/LFeCl3,另一體系中含有NH4OH,混合兩種微乳液充分反應,產(chǎn)物經(jīng)離心,用庚烷、丙酮洗滌并干燥,可以得到Fe3O4納粒(r=4nm)。
3.6高溫超導體的制備
1.在催化方面的應用
催化劑在許多化學化工領(lǐng)域中起著舉足輕重的作用,它可以控制反應時間、提高反應效率和反應速度。大多數(shù)傳統(tǒng)的催化劑不僅催化效率低,而且其制備是憑經(jīng)驗進行,不僅造成生產(chǎn)原料的巨大浪費,使經(jīng)濟效益難以提高,而且對環(huán)境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒于作催化劑,可大大提高反應效率,控制反應速度,甚至使原來不能進行的反應也能進行。納米微粒作催化劑比一般催化劑的反應速度提高10~15倍。
納米微粒作為催化劑應用較多的是半導體光催化劑,特別是在有機物制備方面。分散在溶液中的每一個半導體顆粒,可近似地看成是一個短路的微型電池,用能量大于半導體能隙的光照射半導體分散系時,半導體納米粒子吸收光產(chǎn)生電子——空穴對。在電場作用下,電子與空穴分離,分別遷移到粒子表面的不同位置,與溶液中相似的組分進行氧化和還原反應。
光催化反應涉及到許多反應類型,如醇與烴的氧化,無機離子氧化還原,有機物催化脫氫和加氫、氨基酸合成,固氮反應,水凈化處理,水煤氣變換等,其中有些是多相催化難以實現(xiàn)的。半導體多相光催化劑能有效地降解水中的有機污染物。例如納米TiO2,既有較高的光催化活性,又能耐酸堿,對光穩(wěn)定,無毒,便宜易得,是制備負載型光催化劑的最佳選擇。已有文章報道,選用硅膠為基質(zhì),制得了催化活性較高的TiO/SiO2負載型光催化劑。Ni或Cu一Zn化合物的納米顆粒,對某些有機化合物的氫化反應是極好的催化劑,可代替昂貴的鉑或鈕催化劑。納米鉑黑催化劑可使乙烯的氧化反應溫度從600℃降至室溫。用納米微粒作催化劑提高反應效率、優(yōu)化反應路徑、提高反應速度方面的研究,是未來催化科學不可忽視的重要研究課題,很可能給催化在工業(yè)上的應用帶來革命性的變革。
2.在涂料方面的應用
納米材料由于其表面和結(jié)構(gòu)的特殊性,具有一般材料難以獲得的優(yōu)異性能,顯示出強大的生命力。表面涂層技術(shù)也是當今世界關(guān)注的熱點。納米材料為表面涂層提供了良好的機遇,使得材料的功能化具有極大的可能。借助于傳統(tǒng)的涂層技術(shù),添加納米材料,可獲得納米復合體系涂層,實現(xiàn)功能的飛躍,使得傳統(tǒng)涂層功能改性。涂層按其用途可分為結(jié)構(gòu)涂層和功能涂層。結(jié)構(gòu)涂層是指涂層提高基體的某些性質(zhì)和改性;功能涂層是賦予基體所不具備的性能,從而獲得傳統(tǒng)涂層沒有的功能。結(jié)構(gòu)涂層有超硬、耐磨涂層,抗氧化、耐熱、阻燃涂層,耐腐蝕、裝飾涂層等;功能涂層有消光、光反射、光選擇吸收的光學涂層,導電、絕緣、半導體特性的電學涂層,氧敏、濕敏、氣敏的敏感特性涂層等。在涂料中加入納米材料,可進一步提高其防護能力,實現(xiàn)防紫外線照射、耐大氣侵害和抗降解、變色等,在衛(wèi)生用品上應用可起到殺菌保潔作用。在標牌上使用納米材料涂層,可利用其光學特性,達到儲存太陽能、節(jié)約能源的目的。在建材產(chǎn)品如玻璃、涂料中加入適宜的納米材料,可以達到減少光的透射和熱傳遞效果,產(chǎn)生隔熱、阻燃等效果。日本松下公司已研制出具有良好靜電屏蔽的納米涂料,所應用的納米微粒有氧化鐵、二氧化鈦和氧化鋅等。這些具有半導體特性的納米氧化物粒子,在室溫下具有比常規(guī)的氧化物高的導電特性,因而能起到靜電屏蔽作用,而且氧化物納米微粒的顏色不同,這樣還可以通過復合控制靜電屏蔽涂料的顏色,克服炭黑靜電屏蔽涂料只有單一顏色的單調(diào)性。納米材料的顏色不僅隨粒徑而變,還具有隨角變色效應。在汽車的裝飾噴涂業(yè)中,將納米TiO2添加在汽車、轎車的金屬閃光面漆中,能使涂層產(chǎn)生豐富而神秘的色彩效果,從而使傳統(tǒng)汽車面漆舊貌換新顏。納米SiO2是一種抗紫外線輻射材料。在涂料中加入納米SiO2,可使涂料的抗老化性能、光潔度及強度成倍地增加。納米涂層具有良好的應用前景,將為涂層技術(shù)帶來一場新的技術(shù)革命,也將推動復合材料的研究開發(fā)與應用。
3.在其它精細化工方面的應用
精細化工是一個巨大的工業(yè)領(lǐng)域,產(chǎn)品數(shù)量繁多,用途廣泛,并且影響到人類生活的方方面面。納米材料的優(yōu)越性無疑也會給精細化工帶來福音,并顯示它的獨特畦力。在橡膠、塑料、涂料等精細化工領(lǐng)域,納米材料都能發(fā)揮重要作用。如在橡膠中加入納米SiO2,可以提高橡膠的抗紫外輻射和紅外反射能力。納米Al2O3,和SiO2,加入到普通橡膠中,可以提高橡膠的耐磨性和介電特性,而且彈性也明顯優(yōu)于用白炭黑作填料的橡膠。塑料中添加一定的納米材料,可以提高塑料的強度和韌性,而且致密性和防水性也相應提高。國外已將納米SiO2,作為添加劑加入到密封膠和粘合劑中,使其密封性和粘合性都大為提高。此外,納米材料在纖維改性、有機玻璃制造方面也都有很好的應用。在有機玻璃中加入經(jīng)過表面修飾處理的SiO2,可使有機玻璃抗紫外線輻射而達到抗老化的目的;而加入A12O3,不僅不影響玻璃的透明度,而且還會提高玻璃的高溫沖擊韌性。一定粒度的銳鈦礦型TiO2具有優(yōu)良的紫外線屏蔽性能,而且質(zhì)地細膩,無毒無臭,添加在化妝品中,可使化妝品的性能得到提高。超細TiO2的應用還可擴展到涂料、塑料、人造纖維等行業(yè)。最近又開發(fā)了用于食品包裝的TiO2及高檔汽車面漆用的珠光鈦白。納米TiO2,能夠強烈吸收太陽光中的紫外線,產(chǎn)生很強的光化學活性,可以用光催化降解工業(yè)廢水中的有機污染物,具有除凈度高,無二次污染,適用性廣泛等優(yōu)點,在環(huán)保水處理中有著很好的應用前景。在環(huán)境科學領(lǐng)域,除了利用納米材料作為催化劑來處理工業(yè)生產(chǎn)過程中排放的廢料外,還將出現(xiàn)功能獨特的納米膜。這種膜能探測到由化學和生物制劑造成的污染,并能對這些制劑進行過濾,從而消除污染。
4.在醫(yī)藥方面的應用
21世紀的健康科學,將以出入意料的速度向前發(fā)展,人們對藥物的需求越來越高。控制藥物釋放、減少副作用、提高藥效、發(fā)展藥物定向治療,已提到研究日程上來。納米粒子將使藥物在人體內(nèi)的傳輸更為方便。用數(shù)層納米粒子包裹的智能藥物進入人體,可主動搜索并攻擊癌細胞或修補損傷組織;使用納米技術(shù)的新型診斷儀器,只需檢測少量血液就能通過其中的蛋白質(zhì)和DNA診斷出各種疾病,美國麻省理工學院已制備出以納米磁性材料作為藥物載體的靶定向藥物,稱之為“定向?qū)棥薄T摷夹g(shù)是在磁性納米微粒包覆蛋白質(zhì)表面攜帶藥物,注射到人體血管中,通過磁場導航輸送到病變部位,然后釋放藥物。納米粒子的尺寸小,可以在血管中自由流動,因此可以用來檢查和治療身體各部位的病變。對納米微粒的臨床醫(yī)療以及放射性治療等方面的應用也進行了大量的研究工作。據(jù)《人民日報》報道,我國將納米技術(shù)應用于醫(yī)學領(lǐng)域獲得成功。南京希科集團利用納米銀技術(shù)研制生產(chǎn)出醫(yī)用敷料——長效廣譜抗菌棉。這種抗菌棉的生產(chǎn)原理是通過納米技術(shù)將銀制成尺寸在納米級的超細小微粒,然后使之附著在棉織物上。銀具有預防潰爛和加速傷口愈合的作用,通過納米技術(shù)處理后的銀表面急劇增大,表面結(jié)構(gòu)發(fā)生變化,殺菌能力提高200倍左右,對臨床常見的外科感染細菌都有較好的抑制作用。
微粒和納粒作為給藥系統(tǒng),其制備材料的基本性質(zhì)是無毒、穩(wěn)定、有良好的生物性并且與藥物不發(fā)生化學反應。納米系統(tǒng)主要用于毒副作用大、生物半衰期短、易被生物酶降解的藥物的給藥。
第一階段(1990年以前)主要是在實驗室探索用各種手段制備各種材料的納米顆粒粉體,合成塊體(包括薄膜),研究評估表征的方法,探索納米材料不同于常規(guī)材料的特殊性能。對納米顆粒和納米塊體材料結(jié)構(gòu)的研究在80年代末期一度形成熱潮。研究的對象一般局限在單一材料和單相材料,國際上通常把這類納米材料稱納米晶或納米相材料。
第二階段(1994年前)人們關(guān)注的熱點是如何利用納米材料已挖掘出來的奇特物理、化學和力學性能,設(shè)計納米復合材料,通常采用納米微粒與納米微粒復合,納米微粒與常規(guī)塊體復合及發(fā)展復合材料的合成及物性的探索一度成為納米材料研究的主導方向。
第三階段(從1994年到現(xiàn)在)納米組裝體系、人工組裝合成的納米結(jié)構(gòu)的材料體系越來越受到人們的關(guān)注,正在成為納米材料研究的新的熱點。國際上,把這類材料稱為納米組裝材料體系或者稱為納米尺度的圖案材料。它的基本內(nèi)涵是以納米顆粒以及它們組成的納米絲和管為基本單元在一維、二維和三維空間組裝排列成具有納米結(jié)構(gòu)的體系,基保包括納米陣列體系、介孔組裝體系、薄膜嵌鑲體系。納米顆粒、絲、管可以是有序或無序地排列。
如果說第一階段和第二階段的研究在某種程度上帶有一定的隨機性,那么這一階段研究的特點更強調(diào)人們的意愿設(shè)計、組裝、創(chuàng)造新的體系,更有目的地使該體系具有人們所希望的特性。著名諾貝爾獎金獲得者,美國物理學家費曼曾預言“如果有一天人們能按照自己的意愿排列原子和分子…,那將創(chuàng)造什么樣的奇跡”。就像目前用STM操縱原子一樣,人工地把納米微粒整齊排列就是實現(xiàn)費曼預言,創(chuàng)造新奇跡的起點。美國加利福尼亞大學洛倫茲伯克力國家實驗室的科學家在《自然》雜志上,指出納米尺度的圖案材料是現(xiàn)代材料化學和物理學的重要前沿課題??梢姡{米結(jié)構(gòu)的組裝體系很可能成為納米材料研究的前沿主導方向。
二、納米材料研究的特點
1、納米材料研究的內(nèi)涵不斷擴大
第一階段主要集中在納米顆粒(納米晶、納米相、納米非晶等)以及由它們組成的薄膜與塊體,到第三階段納米材料研究對象又涉及到納米絲、納米管、微孔和介孔材料(包括凝膠和氣凝膠),例如氣凝膠孔隙率高于90%,孔徑大小為納米級,這就導致孔隙間的材料實際上是納米尺度的微粒或絲,這種納米結(jié)構(gòu)為嵌鑲、組裝納米微粒提供一個三維空間。納米管的出現(xiàn),豐富了納米材料研究的內(nèi)涵,為合成組裝納米材料提供了新的機遇。
2.納米材料的概念不斷拓寬
1994年以前,納米結(jié)構(gòu)材料僅僅包括納米微粒及其形成的納米塊體、納米薄膜,現(xiàn)在納米結(jié)構(gòu)的材料的含意還包括納米組裝體系,該體系除了包含納米微粒實體的組元,還包括支撐它們的具有納米尺度的空間的基體,因此,納米結(jié)構(gòu)材料內(nèi)涵變得豐富多彩。
3.納米材料的應用成為人們關(guān)注的熱點
經(jīng)過第一階段和第二階段研究,人們已經(jīng)發(fā)現(xiàn)納米材料所具備的不同于常規(guī)材料的新特性,對傳統(tǒng)工業(yè)和常規(guī)產(chǎn)品會產(chǎn)生重要的影響。日本、美國和西歐都相繼把實驗室的成果轉(zhuǎn)化為規(guī)模生產(chǎn),據(jù)不完全統(tǒng)計,國際上已有20多個納米材料公司經(jīng)營粉體生產(chǎn)線,其中陶瓷納米粉體對常規(guī)陶瓷和高技術(shù)陶瓷的改性、納米功能涂層的制備技術(shù)和涂層工藝、納米添加功能油漆涂料的研究、納米添加塑料改性以及納米材料在環(huán)保、能源、醫(yī)藥等領(lǐng)域的應用,磨料、釉料以及紙張和纖維填料的納米化研究也相繼展開。納米材料及其相關(guān)的產(chǎn)品從1994年開始已陸續(xù)進入市場,所創(chuàng)造的經(jīng)濟效益以20%速度增長。
三、納米材料的發(fā)展趨勢
1.加強控制工程的研究
在納米材料制備科學和技術(shù)研究方面一個重要的趨勢是加強控制工程的研究,這包括顆粒尺寸、形狀、表面、微結(jié)構(gòu)的控制。由于納米顆粒的小尺寸效應、表面效應和量子尺寸效應都同時在起作用,它們對材料某一種性能的貢獻大小、強弱往往很難區(qū)分,是有利的作用,還是不利的作用更難以判斷,這不但給某一現(xiàn)象的解釋帶來困難,同時也給設(shè)計新型納米結(jié)構(gòu)帶來很大的困難。如何控制這些效應對納米材料性能的影響,如何控制一種效應的影響而引出另一種效應的影響,這都是控制工程研究亟待解決的問題。國際上近一兩年來,納米材料控制工程的研究主要有以下幾個方面:一是納米顆粒的表面改性,通過納米微粒的表面做異性物質(zhì)和表面的修飾可以改變表面帶電狀態(tài)、表面結(jié)構(gòu)和粗糙度;二是通過納米微粒在多孔基體中的分布狀態(tài)(連續(xù)分布還是孤立分布)來控制量子尺寸效應和滲流效應;三是通過設(shè)計納米絲、管等的陣列體系(包括有序陣列和無序陣列)來獲得所需要的特性。
2.近年來引人注目的幾具新動向
(1)納米組裝體系藍綠光的研究出現(xiàn)新的苗頭。日本Nippon鋼鐵公司閃電化學陽極腐蝕方法獲得6H多孔碳化硅,發(fā)現(xiàn)了藍綠光發(fā)光強度比6H碳化硅晶體高100倍:多孔硅在制備過程中經(jīng)紫外輻照或氧化也發(fā)藍綠光;含有Dy和Al的SiO2氣凝膠在390nm波長光激發(fā)下發(fā)射極強的藍綠光,比多孔Si的最強紅光還高出1倍多,250nm波長光激發(fā)出極強的藍光。
2磁性納米材料捕獲致病菌的方式及其應用
磁性納米材料通過生物學修飾,獲得可以捕獲食源性致病菌的能力,再利用外界磁場從而達到分離菌體目的。表2總結(jié)了近幾年磁性納米材料在分離不同食品基質(zhì)中食源性致病菌的研究。磁性納米材料表面使用的修飾物不同,捕獲食源性致病菌的方式也不同。
2.1抗原-抗體
基于抗原抗體之間的特異性反應實現(xiàn)食源性致病菌捕獲是最常用的方式,已被廣泛應用于各種食源性致病菌的分離富集。食源性致病菌相應的抗體也是磁性納米材料最常用的修飾物。將磁性納米材料的表面包被相應抗體,利用抗體和細菌表面相應抗原間的特異性結(jié)合,將食源性致病菌和磁性納米粒子連接,致病菌被“磁化”后,在外界磁場的作用下將目標菌從成份復雜的樣品液中分離出來,便于后續(xù)檢測。Varshney等通過生物素-鏈霉親和素將抗大腸桿菌抗體包被到磁性納米粒子的表面,用于捕獲牛肉樣本中大腸桿菌O157∶H7,捕獲效率達94.5%。Yang等用相應抗體修飾氧化鐵納米粒子,結(jié)合實時定量聚合酶鏈式反應,檢測牛奶樣品中的單增李斯特菌,檢測限達452CFU/mL。Ravindranath等分別制備了包被有抗大腸桿菌抗體和抗沙門氏菌抗體的功能化磁性納米粒子,用于分離雞尾酒和菠菜牛奶提取液中相應的食源性致病菌,結(jié)合紅外光譜分析,檢測限達104~105CFU/mL。Cheng等使用抗大腸桿菌O157∶H7抗體包被的磁性納米粒子分離牛奶中的大腸桿菌O157∶H7,結(jié)合三磷酸腺苷生物發(fā)光分析,檢測限達20CFU/mL。Wang等制備了兩種特異性抗體共修飾的磁性氧化鐵納米粒子用于同時分離菠菜中的沙門氏菌和金黃色葡萄球菌,結(jié)合表面增強拉曼散射分析,檢測限達103CFU/mL。
2.2黏附素(凝集素)-受體(糖類)
很多細菌會在其表面表達黏附素,它們能與宿主細胞表面相應受體結(jié)合,從而使細菌黏附在宿主細胞上。致病菌黏附宿主上皮細胞的機制與多種糖類有關(guān)。例如,大腸桿菌的表面可以表達產(chǎn)生多種黏附素,它們可以黏附宿主上皮細胞上的半乳糖、葡萄糖、果糖、巖藻糖、甘露糖和蔗糖等。利用黏附素與受體結(jié)合的性質(zhì),經(jīng)凝集素或糖類修飾的磁性納米粒子可特異性地結(jié)合相應的食源性致病菌。EI-Boubbou等用D-甘露糖修飾的磁性納米粒子分離大腸桿菌,分離效率達88%以上。作者再結(jié)合X射線衍射、透射電鏡、熱重和紅外光譜分析,在5min內(nèi)即可完成檢測,檢測限達104個菌體/mL。Payne等用凝集素修飾的BioMag®粒子分離食品基質(zhì)中的致病菌,結(jié)果顯示,單增李斯特菌、金黃色葡萄球菌和沙門氏菌最低分離起始濃度分別為大于等于10CFU/10g(卡蒙貝爾奶酪)、1CFU/10g(燉牛排)和小于10CFU/10g(生牛肉)。WangYixian等制備了基于凝集素的生物傳感器,用于分離檢測食品樣品中的大腸桿菌O157∶H7,檢測限達3×103CFU/mL。
2.3抗生素(萬古霉素)
萬古霉素是一種糖肽類抗生素,它可以與許多種革蘭氏陽性菌形成緊密的連接,其機制是通過細胞壁上的端肽D-Ala-D-Ala的氫鍵與萬古霉素聯(lián)接。一般認為,由于革蘭氏陰性菌外膜的存在,萬古霉素不能接觸到D-Ala-D-Ala端肽,因而不能識別革蘭氏陰性菌。據(jù)報道,經(jīng)萬古霉素修飾過的磁性納米粒子同樣可以捕獲革蘭氏陰性菌,并由透射電子顯微鏡的照片猜想萬古霉素與革蘭氏陰性菌連接的機制為細菌外膜上存在缺陷區(qū)域,使部分D-Ala-D-Ala端肽暴露給萬古霉素。Kell等隨后驗證了這一猜想。Gu等在FePt磁性納米粒子表面修飾萬古霉素(FePt-Van),從大腸桿菌菌液中分離出菌體后再用透射電鏡觀察,檢測限達15CFU/mL。Kell等制備了萬古霉素修飾的磁性納米粒子用于同時分離水樣中革蘭氏陽性菌及革蘭氏陰性菌,結(jié)果顯示,不同的致病菌間捕獲效率相差很大(7%~88%)。Wan等使用萬古霉素修飾的磁性納米粒子分離磷酸鹽緩沖液中添加的海洋型硫還原型細菌(如,脫硫腸狀菌屬),結(jié)合生物傳感器,檢測限達1.8×104CFU/mL。Choi等在磁性氧化鐵納米粒子表面修飾萬古霉素,并用其對臨床樣本中的細菌進行分離,實驗結(jié)果發(fā)現(xiàn),革蘭氏陽性菌的捕獲效率為(84.84±1.70)%,而革蘭氏陰性菌的捕獲效率為(48.48±1.79)%。Chen等用表面修飾有慶大霉素的磁性納米粒子用于分離磷酸鹽緩沖液中添加的金黃色葡萄球菌,最低分離的細菌濃度為0.5×103CFU/mL。
2.4DNA互補序列
任何細菌都有其特異性的基因片段,該基因片段的互補寡核苷酸片段可以識別樣品中的該種細菌。將寡核苷酸片段修飾后的磁性納米材料用于選擇性的分離目標DNA或RNA,再結(jié)合PCR鑒定,不僅省去樣品的預處理,靈敏度也比普通PCR提高近10倍。Amagliani等用與李斯特菌素O基因序列(hlyA)互補的寡核苷酸鏈修飾磁性氧化鐵納米粒子分離牛奶樣品中的單增李斯特菌的DNA,結(jié)合PCR分析,檢測限達10CFU/mL。筆者在2010年制備了分別針對單增李斯特菌和沙門氏菌的寡核苷酸修飾的磁性氧化鐵納米粒子用于分離魚中單增李斯特菌和沙門氏菌的DNA,結(jié)果發(fā)現(xiàn),單增李斯特菌和沙門氏菌的捕獲效率分別為(62.5±10.0)%和(70.6±7.0)%。結(jié)合多重PCR分析,檢測限達1CFU/g。XuHongxia等研究了不同食源性致病菌寡核苷酸修飾的磁性納米粒子在致病菌分離中的應用,實驗結(jié)果發(fā)現(xiàn),該磁性納米粒子可以快速富集相應致病菌(如,大腸桿菌O157、沙門氏菌等)。筆者進一步研究了同時使用食源性致病菌多個基因的互補寡核苷酸修飾的磁性納米粒子分離相應致病菌,結(jié)合傳感器檢測,檢測限達6×102CFU/mL。
2.5螯合反應
脂多糖是革蘭氏陰性菌外膜的重要組分,其中類脂A有大量的磷酸基團,用金屬氧化物(氧化鈦、氧化鋯或氧化鋁)包被磁性納米粒子,通過金屬氧化物與磷酸基團間的螯合反應,可與待測樣品中革蘭氏陰性菌形成復合物,在外界磁場的作用下可將食源性致病菌從成分復雜的待測液中非選擇性分離出來,消除樣品基質(zhì)的干擾。Chen等在磁性氧化鐵納米粒子的表面包被二氧化鈦,利用脂多糖和金屬氧化物的螯合作用捕獲尿樣中的大腸桿菌、志賀氏菌和假單胞菌,磁分離富集菌體后經(jīng)胰蛋白酶水解,再次磁分離除去磁性納米粒子,最后用基質(zhì)輔助激光解吸-電離質(zhì)譜法鑒定蛋白序列,根據(jù)蛋白庫中的信息確定細菌的種類。該方法是一種快速(耗時15min)、特異性強(可區(qū)分兩株不同的大腸桿菌)、靈敏(檢測限達104個細胞/mL)的分離檢測方法。2010年,筆者使用表面修飾有二氧化鈦的磁性氧化鐵納米粒子分離細菌混合液中的目標致病菌,隨后分離到的致病菌在紫外燈照射下結(jié)合二氧化鈦的滅菌作用,15min內(nèi)可以抑制99.9%以上的目標菌的生長。
有人曾經(jīng)預測在21世紀納米技術(shù)將成為超過技術(shù)和基因技術(shù)的“決定性技術(shù)”,由此納米材料將成為最有前途的材料。世界各國相繼投入巨資進行,美國從2000年啟動了國家納米計劃,國際納米結(jié)構(gòu)材料會議自1992年以來每兩年召開一次,與納米技術(shù)有關(guān)的國際期刊也很多。
一、納米材料的特殊性質(zhì)
納米材料高度的彌散性和大量的界面為原子提供了短程擴散途徑,導致了高擴散率,它對蠕變,超塑性有顯著,并使有限固溶體的固溶性增強、燒結(jié)溫度降低、化學活性增大、耐腐蝕性增強。因此納米材料所表現(xiàn)的力、熱、聲、光、電磁等性質(zhì),往往不同于該物質(zhì)在粗晶狀態(tài)時表現(xiàn)出的性質(zhì)。與傳統(tǒng)晶體材料相比,納米材料具有高強度——硬度、高擴散性、高塑性——韌性、低密度、低彈性模量、高電阻、高比熱、高熱膨脹系數(shù)、低熱導率、強軟磁性能。這些特殊性能使納米材料可廣泛地用于高力學性能環(huán)境、光熱吸收、非線性光學、磁記錄、特殊導體、分子篩、超微復合材料、催化劑、熱交換材料、敏感元件、燒結(jié)助劑、劑等領(lǐng)域。
(一)力學性質(zhì)
高韌、高硬、高強是結(jié)構(gòu)材料開發(fā)應用的經(jīng)典主題。具有納米結(jié)構(gòu)的材料強度與粒徑成反比。納米材料的位錯密度很低,位錯滑移和增殖符合Frank-Reed模型,其臨界位錯圈的直徑比納米晶粒粒徑還要大,增殖后位錯塞積的平均間距一般比晶粒大,所以納迷材料中位錯滑移和增殖不會發(fā)生,這就是納米晶強化效應。金屬陶瓷作為刀具材料已有50多年,由于金屬陶瓷的混合燒結(jié)和晶粒粗大的原因其力學強度一直難以有大的提高。應用納米技術(shù)制成超細或納米晶粒材料時,其韌性、強度、硬度大幅提高,使其在難以加工材料刀具等領(lǐng)域占據(jù)了主導地位。使用納米技術(shù)制成的陶瓷、纖維廣泛地應用于航空、航天、航海、石油鉆探等惡劣環(huán)境下使用。
(二)磁學性質(zhì)
當代機硬盤系統(tǒng)的磁記錄密度超過1.55Gb/cm2,在這情況下,感應法讀出磁頭和普通坡莫合金磁電阻磁頭的磁致電阻效應為3%,已不能滿足需要,而納米多層膜系統(tǒng)的巨磁電阻效應高達50%,可以用于信息存儲的磁電阻讀出磁頭,具有相當高的靈敏度和低噪音。巨磁電阻效應的讀出磁頭可將磁盤的記錄密度提高到1.71Gb/cm2。同時納米巨磁電阻材料的磁電阻與外磁場間存在近似線性的關(guān)系,所以也可以用作新型的磁傳感材料。高分子復合納米材料對可見光具有良好的透射率,對可見光的吸收系數(shù)比傳統(tǒng)粗晶材料低得多,而且對紅外波段的吸收系數(shù)至少比傳統(tǒng)粗晶材料低3個數(shù)量級,磁性比FeBO3和FeF3透明體至少高1個數(shù)量級,從而在光磁系統(tǒng)、光磁材料中有著廣泛的應用。
(三)電學性質(zhì)
由于晶界面上原子體積分數(shù)增大,納米材料的電阻高于同類粗晶材料,甚至發(fā)生尺寸誘導金屬——絕緣體轉(zhuǎn)變(SIMIT)。利用納米粒子的隧道量子效應和庫侖堵塞效應制成的納米器件具有超高速、超容量、超微型低能耗的特點,有可能在不久的將來全面取代目前的常規(guī)半導體器件。2001年用碳納米管制成的納米晶體管,表現(xiàn)出很好的晶體三極管放大特性。并根據(jù)低溫下碳納米管的三極管放大特性,成功研制出了室溫下的單電子晶體管。隨著單電子晶體管研究的深入進展,已經(jīng)成功研制出由碳納米管組成的邏輯電路。
(四)熱學性質(zhì)
納米材料的比熱和熱膨脹系數(shù)都大于同類粗晶材料和非晶體材料的值,這是由于界面原子排列較為混亂、原子密度低、界面原子耦合作用變?nèi)醯慕Y(jié)果。因此在儲熱材料、納米復合材料的機械耦合性能應用方面有其廣泛的應用前景。例如Cr-Cr2O3顆粒膜對太陽光有強烈的吸收作用,從而有效地將太陽光能轉(zhuǎn)換為熱能。
(五)光學性質(zhì)
納米粒子的粒徑遠小于光波波長。與入射光有交互作用,光透性可以通過控制粒徑和氣孔率而加以精確控制,在光感應和光過濾中廣泛。由于量子尺寸效應,納米半導體微粒的吸收光譜一般存在藍移現(xiàn)象,其光吸收率很大,所以可應用于紅外線感測器材料。
(六)生物醫(yī)藥材料應用
納米粒子比紅血細胞(6~9nm)小得多,可以在血液中自由運動,如果利用納米粒子研制成機器人,注入人體血管內(nèi),就可以對人體進行全身健康檢查和,疏通腦血管中的血栓,清除心臟動脈脂肪沉積物等,還可吞噬病毒,殺死癌細胞。在醫(yī)藥方面,可在納米材料的尺寸上直接利用原子、分子的排布制造具有特定功能的藥品納米材料粒子將使藥物在人體內(nèi)的輸運更加方便。
二、納米技術(shù)現(xiàn)狀
在歐美日上已有多家廠商相繼將納米粉末和納米元件產(chǎn)業(yè)化,我國也在國際環(huán)境下創(chuàng)立了一(下轉(zhuǎn)第37頁)(上接第26頁)些影響不大的納米材料開發(fā)公司。美國2001年通過了“國家納米技術(shù)啟動計劃(NationalTechnologyInitiative)”,年度撥款已達到5億美圓以上。美國戰(zhàn)略的重點已由過去的國家通信基礎(chǔ)構(gòu)想轉(zhuǎn)向國家納米技術(shù)計劃。布什總統(tǒng)上臺后,制定了新的納米技術(shù)的戰(zhàn)略規(guī)劃目標:到2010年在全國培養(yǎng)80萬名納米技術(shù)人才,納米技術(shù)創(chuàng)造的GDP要達到萬億美圓以上,并由此提供200萬個就業(yè)崗位。2003年,在美國政府支持下,英特爾、蕙普、IBM及康柏4家公司正式成立中心,在硅谷建立了世界上第一條納米芯生產(chǎn)線。許多大學也相繼建立了一系列納米技術(shù)研究中心。在商業(yè)上,納米技術(shù)已經(jīng)被用于陶瓷、金屬、聚合物的納米粒子、納米結(jié)構(gòu)合金、著色劑與化妝品、元件等的制備。
目前美國在納米合成、納米裝置精密加工、納米生物技術(shù)、納米基礎(chǔ)等多方面處于世界領(lǐng)先地位。歐洲在涂層和新儀器應用方面處于世界領(lǐng)先地位。早在“尤里卡計劃”中就將納米技術(shù)研究納入其中,現(xiàn)在又將納米技術(shù)列入歐盟2002——2006科研框架計劃。日本在納米設(shè)備和強化納米結(jié)構(gòu)領(lǐng)域處于世界先進地位。日本政府把納米技術(shù)列入國家科技發(fā)展戰(zhàn)略4大重點領(lǐng)域,加大預算投入,制定了宏偉而嚴密的“納米技術(shù)發(fā)展計劃”。日本的各個大學、研究機構(gòu)和界也紛紛以各種方式投入到納米技術(shù)開發(fā)大潮中來。
在上世紀80年代,將納米材料列入國家“863計劃”、和國家基金項目,投資上億元用于有關(guān)納米材料和技術(shù)的研究項目。但我國的納米技術(shù)水平與歐美等國的差距很大。目前我國有50多個大學20多家研究機構(gòu)和300多所企業(yè)從事納米研究,已經(jīng)建立了10多條納米技術(shù)生產(chǎn)線,以納米技術(shù)注冊的公司100多個,主要生產(chǎn)超細納米粉末、生物化學納米粉末等初級產(chǎn)品。
三、前景展望
經(jīng)過幾十年對納米技術(shù)的研究探索,現(xiàn)在科學家已經(jīng)能夠在實驗室操縱單個原子,納米技術(shù)有了飛躍式的發(fā)展。納米技術(shù)的應用研究正在半導體芯片、癌癥診斷、光學新材料和生物分子追蹤4大領(lǐng)域高速發(fā)展??梢灶A測:不久的將來納米金屬氧化物半導體場效應管、平面顯示用發(fā)光納米粒子與納米復合物、納米光子晶體將應運而生;用于集成電路的單電子晶體管、記憶及邏輯元件、分子化學組裝機將投入應用;分子、原子簇的控制和自組裝、量子邏輯器件、分子電子器件、納米機器人、集成生物化學傳感器等將被研究制造出來。
1.在催化方面的應用
催化劑在許多化學化工領(lǐng)域中起著舉足輕重的作用,它可以控制反應時間、提高反應效率和反應速度。大多數(shù)傳統(tǒng)的催化劑不僅催化效率低,而且其制備是憑經(jīng)驗進行,不僅造成生產(chǎn)原料的巨大浪費,使效益難以提高,而且對環(huán)境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒于作催化劑,可大大提高反應效率,控制反應速度,甚至使原來不能進行的反應也能進行。納米微粒作催化劑比一般催化劑的反應速度提高10~15倍。
納米微粒作為催化劑應用較多的是半導體光催化劑,特別是在有機物制備方面。分散在溶液中的每一個半導體顆粒,可近似地看成是一個短路的微型電池,用能量大于半導體能隙的光照射半導體分散系時,半導體納米粒子吸收光產(chǎn)生——空穴對。在電場作用下,電子與空穴分離,分別遷移到粒子表面的不同位置,與溶液中相似的組分進行氧化和還原反應。
光催化反應涉及到許多反應類型,如醇與烴的氧化,無機離子氧化還原,有機物催化脫氫和加氫、氨基酸合成,固氮反應,水凈化處理,水煤氣變換等,其中有些是多相催化難以實現(xiàn)的。半導體多相光催化劑能有效地降解水中的有機污染物。例如納米TiO2,既有較高的光催化活性,又能耐酸堿,對光穩(wěn)定,無毒,便宜易得,是制備負載型光催化劑的最佳選擇。已有文章報道,選用硅膠為基質(zhì),制得了催化活性較高的TiO/SiO2負載型光催化劑。Ni或Cu一Zn化合物的納米顆粒,對某些有機化合物的氫化反應是極好的催化劑,可代替昂貴的鉑或鈕催化劑。納米鉑黑催化劑可使乙烯的氧化反應溫度從600℃降至室溫。用納米微粒作催化劑提高反應效率、優(yōu)化反應路徑、提高反應速度方面的研究,是未來催化不可忽視的重要研究課題,很可能給催化在上的應用帶來革命性的變革。
2.在涂料方面的應用
納米材料由于其表面和結(jié)構(gòu)的特殊性,具有一般材料難以獲得的優(yōu)異性能,顯示出強大的生命力。表面涂層技術(shù)也是當今世界關(guān)注的熱點。納米材料為表面涂層提供了良好的機遇,使得材料的功能化具有極大的可能。借助于傳統(tǒng)的涂層技術(shù),添加納米材料,可獲得納米復合體系涂層,實現(xiàn)功能的飛躍,使得傳統(tǒng)涂層功能改性。涂層按其用途可分為結(jié)構(gòu)涂層和功能涂層。結(jié)構(gòu)涂層是指涂層提高基體的某些性質(zhì)和改性;功能涂層是賦予基體所不具備的性能,從而獲得傳統(tǒng)涂層沒有的功能。結(jié)構(gòu)涂層有超硬、耐磨涂層,抗氧化、耐熱、阻燃涂層,耐腐蝕、裝飾涂層等;功能涂層有消光、光反射、光選擇吸收的光學涂層,導電、絕緣、半導體特性的電學涂層,氧敏、濕敏、氣敏的敏感特性涂層等。在涂料中加入納米材料,可進一步提高其防護能力,實現(xiàn)防紫外線照射、耐大氣侵害和抗降解、變色等,在衛(wèi)生用品上應用可起到殺菌保潔作用。在標牌上使用納米材料涂層,可利用其光學特性,達到儲存太陽能、節(jié)約能源的目的。在建材產(chǎn)品如玻璃、涂料中加入適宜的納米材料,可以達到減少光的透射和熱傳遞效果,產(chǎn)生隔熱、阻燃等效果。日本松下公司已研制出具有良好靜電屏蔽的納米涂料,所應用的納米微粒有氧化鐵、二氧化鈦和氧化鋅等。這些具有半導體特性的納米氧化物粒子,在室溫下具有比常規(guī)的氧化物高的導電特性,因而能起到靜電屏蔽作用,而且氧化物納米微粒的顏色不同,這樣還可以通過復合控制靜電屏蔽涂料的顏色,克服炭黑靜電屏蔽涂料只有單一顏色的單調(diào)性。納米材料的顏色不僅隨粒徑而變,還具有隨角變色效應。在汽車的裝飾噴涂業(yè)中,將納米TiO2添加在汽車、轎車的金屬閃光面漆中,能使涂層產(chǎn)生豐富而神秘的色彩效果,從而使傳統(tǒng)汽車面漆舊貌換新顏。納米SiO2是一種抗紫外線輻射材料。在涂料中加入納米SiO2,可使涂料的抗老化性能、光潔度及強度成倍地增加。納米涂層具有良好的應用前景,將為涂層技術(shù)帶來一場新的技術(shù)革命,也將推動復合材料的研究開發(fā)與應用。
3.在其它精細化工方面的
精細化工是一個巨大的領(lǐng)域,產(chǎn)品數(shù)量繁多,用途廣泛,并且到人類生活的方方面面。納米材料的優(yōu)越性無疑也會給精細化工帶來福音,并顯示它的獨特畦力。在橡膠、塑料、涂料等精細化工領(lǐng)域,納米材料都能發(fā)揮重要作用。如在橡膠中加入納米SiO2,可以提高橡膠的抗紫外輻射和紅外反射能力。納米Al2O3,和SiO2,加入到普通橡膠中,可以提高橡膠的耐磨性和介電特性,而且彈性也明顯優(yōu)于用白炭黑作填料的橡膠。塑料中添加一定的納米材料,可以提高塑料的強度和韌性,而且致密性和防水性也相應提高。國外已將納米SiO2,作為添加劑加入到密封膠和粘合劑中,使其密封性和粘合性都大為提高。此外,納米材料在纖維改性、有機玻璃制造方面也都有很好的應用。在有機玻璃中加入經(jīng)過表面修飾處理的SiO2,可使有機玻璃抗紫外線輻射而達到抗老化的目的;而加入A12O3,不僅不影響玻璃的透明度,而且還會提高玻璃的高溫沖擊韌性。一定粒度的銳鈦礦型TiO2具有優(yōu)良的紫外線屏蔽性能,而且質(zhì)地細膩,無毒無臭,添加在化妝品中,可使化妝品的性能得到提高。超細TiO2的應用還可擴展到涂料、塑料、人造纖維等行業(yè)。最近又開發(fā)了用于食品包裝的TiO2及高檔汽車面漆用的珠光鈦白。納米TiO2,能夠強烈吸收太陽光中的紫外線,產(chǎn)生很強的光化學活性,可以用光催化降解工業(yè)廢水中的有機污染物,具有除凈度高,無二次污染,適用性廣泛等優(yōu)點,在環(huán)保水處理中有著很好的應用前景。在環(huán)境領(lǐng)域,除了利用納米材料作為催化劑來處理工業(yè)生產(chǎn)過程中排放的廢料外,還將出現(xiàn)功能獨特的納米膜。這種膜能探測到由化學和生物制劑造成的污染,并能對這些制劑進行過濾,從而消除污染。
4.在醫(yī)藥方面的應用
21世紀的健康科學,將以出入意料的速度向前,人們對藥物的需求越來越高??刂扑幬镝尫?、減少副作用、提高藥效、發(fā)展藥物定向,已提到日程上來。納米粒子將使藥物在人體內(nèi)的傳輸更為方便。用數(shù)層納米粒子包裹的智能藥物進入人體,可主動搜索并攻擊癌細胞或修補損傷組織;使用納米技術(shù)的新型診斷儀器,只需檢測少量血液就能通過其中的蛋白質(zhì)和DNA診斷出各種疾病,美國麻省理工學院已制備出以納米磁性材料作為藥物載體的靶定向藥物,稱之為“定向?qū)棥?。該技術(shù)是在磁性納米微粒包覆蛋白質(zhì)表面攜帶藥物,注射到人體血管中,通過磁場導航輸送到病變部位,然后釋放藥物。納米粒子的尺寸小,可以在血管中自由流動,因此可以用來檢查和治療身體各部位的病變。對納米微粒的臨床醫(yī)療以及放射性治療等方面的應用也進行了大量的研究工作。據(jù)《人民日報》報道,我國將納米技術(shù)應用于醫(yī)學領(lǐng)域獲得成功。南京??萍瘓F利用納米銀技術(shù)研制生產(chǎn)出醫(yī)用敷料——長效廣譜抗菌棉。這種抗菌棉的生產(chǎn)原理是通過納米技術(shù)將銀制成尺寸在納米級的超細小微粒,然后使之附著在棉織物上。銀具有預防潰爛和加速傷口愈合的作用,通過納米技術(shù)處理后的銀表面急劇增大,表面結(jié)構(gòu)發(fā)生變化,殺菌能力提高200倍左右,對臨床常見的外科感染細菌都有較好的抑制作用。
微粒和納粒作為給藥系統(tǒng),其制備材料的基本性質(zhì)是無毒、穩(wěn)定、有良好的生物性并且與藥物不發(fā)生化學反應。納米系統(tǒng)主要用于毒副作用大、生物半衰期短、易被生物酶降解的藥物的給藥。
1.在催化方面的應用
催化劑在許多化學化工領(lǐng)域中起著舉足輕重的作用,它可以控制反應時間、提高反應效率和反應速度。大多數(shù)傳統(tǒng)的催化劑不僅催化效率低,而且其制備是憑經(jīng)驗進行,不僅造成生產(chǎn)原料的巨大浪費,使經(jīng)濟效益難以提高,而且對環(huán)境也造成污染。納米粒子表面活性中心多,為它作催化劑提供了必要條件。納米粒于作催化劑,可大大提高反應效率,控制反應速度,甚至使原來不能進行的反應也能進行。納米微粒作催化劑比一般催化劑的反應速度提高10~15倍。
納米微粒作為催化劑應用較多的是半導體光催化劑,特別是在有機物制備方面。分散在溶液中的每一個半導體顆粒,可近似地看成是一個短路的微型電池,用能量大于半導體能隙的光照射半導體分散系時,半導體納米粒子吸收光產(chǎn)生電子——空穴對。在電場作用下,電子與空穴分離,分別遷移到粒子表面的不同位置,與溶液中相似的組分進行氧化和還原反應。
光催化反應涉及到許多反應類型,如醇與烴的氧化,無機離子氧化還原,有機物催化脫氫和加氫、氨基酸合成,固氮反應,水凈化處理,水煤氣變換等,其中有些是多相催化難以實現(xiàn)的。半導體多相光催化劑能有效地降解水中的有機污染物。例如納米TiO2,既有較高的光催化活性,又能耐酸堿,對光穩(wěn)定,無毒,便宜易得,是制備負載型光催化劑的最佳選擇。已有文章報道,選用硅膠為基質(zhì),制得了催化活性較高的TiO/SiO2負載型光催化劑。Ni或Cu一Zn化合物的納米顆粒,對某些有機化合物的氫化反應是極好的催化劑,可代替昂貴的鉑或鈕催化劑。納米鉑黑催化劑可使乙烯的氧化反應溫度從600℃降至室溫。用納米微粒作催化劑提高反應效率、優(yōu)化反應路徑、提高反應速度方面的研究,是未來催化科學不可忽視的重要研究課題,很可能給催化在工業(yè)上的應用帶來革命性的變革。
2.在涂料方面的應用
納米材料由于其表面和結(jié)構(gòu)的特殊性,具有一般材料難以獲得的優(yōu)異性能,顯示出強大的生命力。表面涂層技術(shù)也是當今世界關(guān)注的熱點。納米材料為表面涂層提供了良好的機遇,使得材料的功能化具有極大的可能。借助于傳統(tǒng)的涂層技術(shù),添加納米材料,可獲得納米復合體系涂層,實現(xiàn)功能的飛躍,使得傳統(tǒng)涂層功能改性。涂層按其用途可分為結(jié)構(gòu)涂層和功能涂層。結(jié)構(gòu)涂層是指涂層提高基體的某些性質(zhì)和改性;功能涂層是賦予基體所不具備的性能,從而獲得傳統(tǒng)涂層沒有的功能。結(jié)構(gòu)涂層有超硬、耐磨涂層,抗氧化、耐熱、阻燃涂層,耐腐蝕、裝飾涂層等;功能涂層有消光、光反射、光選擇吸收的光學涂層,導電、絕緣、半導體特性的電學涂層,氧敏、濕敏、氣敏的敏感特性涂層等。在涂料中加入納米材料,可進一步提高其防護能力,實現(xiàn)防紫外線照射、耐大氣侵害和抗降解、變色等,在衛(wèi)生用品上應用可起到殺菌保潔作用。在標牌上使用納米材料涂層,可利用其光學特性,達到儲存太陽能、節(jié)約能源的目的。在建材產(chǎn)品如玻璃、涂料中加入適宜的納米材料,可以達到減少光的透射和熱傳遞效果,產(chǎn)生隔熱、阻燃等效果。日本松下公司已研制出具有良好靜電屏蔽的納米涂料,所應用的納米微粒有氧化鐵、二氧化鈦和氧化鋅等。這些具有半導體特性的納米氧化物粒子,在室溫下具有比常規(guī)的氧化物高的導電特性,因而能起到靜電屏蔽作用,而且氧化物納米微粒的顏色不同,這樣還可以通過復合控制靜電屏蔽涂料的顏色,克服炭黑靜電屏蔽涂料只有單一顏色的單調(diào)性。納米材料的顏色不僅隨粒徑而變,還具有隨角變色效應。在汽車的裝飾噴涂業(yè)中,將納米TiO2添加在汽車、轎車的金屬閃光面漆中,能使涂層產(chǎn)生豐富而神秘的色彩效果,從而使傳統(tǒng)汽車面漆舊貌換新顏。納米SiO2是一種抗紫外線輻射材料。在涂料中加入納米SiO2,可使涂料的抗老化性能、光潔度及強度成倍地增加。納米涂層具有良好的應用前景,將為涂層技術(shù)帶來一場新的技術(shù)革命,也將推動復合材料的研究開發(fā)與應用。
3.在其它精細化工方面的應用
精細化工是一個巨大的工業(yè)領(lǐng)域,產(chǎn)品數(shù)量繁多,用途廣泛,并且影響到人類生活的方方面面。納米材料的優(yōu)越性無疑也會給精細化工帶來福音,并顯示它的獨特畦力。在橡膠、塑料、涂料等精細化工領(lǐng)域,納米材料都能發(fā)揮重要作用。如在橡膠中加入納米SiO2,可以提高橡膠的抗紫外輻射和紅外反射能力。納米Al2O3,和SiO2,加入到普通橡膠中,可以提高橡膠的耐磨性和介電特性,而且彈性也明顯優(yōu)于用白炭黑作填料的橡膠。塑料中添加一定的納米材料,可以提高塑料的強度和韌性,而且致密性和防水性也相應提高。國外已將納米SiO2,作為添加劑加入到密封膠和粘合劑中,使其密封性和粘合性都大為提高。此外,納米材料在纖維改性、有機玻璃制造方面也都有很好的應用。在有機玻璃中加入經(jīng)過表面修飾處理的SiO2,可使有機玻璃抗紫外線輻射而達到抗老化的目的;而加入A12O3,不僅不影響玻璃的透明度,而且還會提高玻璃的高溫沖擊韌性。一定粒度的銳鈦礦型TiO2具有優(yōu)良的紫外線屏蔽性能,而且質(zhì)地細膩,無毒無臭,添加在化妝品中,可使化妝品的性能得到提高。超細TiO2的應用還可擴展到涂料、塑料、人造纖維等行業(yè)。最近又開發(fā)了用于食品包裝的TiO2及高檔汽車面漆用的珠光鈦白。納米TiO2,能夠強烈吸收太陽光中的紫外線,產(chǎn)生很強的光化學活性,可以用光催化降解工業(yè)廢水中的有機污染物,具有除凈度高,無二次污染,適用性廣泛等優(yōu)點,在環(huán)保水處理中有著很好的應用前景。在環(huán)境科學領(lǐng)域,除了利用納米材料作為催化劑來處理工業(yè)生產(chǎn)過程中排放的廢料外,還將出現(xiàn)功能獨特的納米膜。這種膜能探測到由化學和生物制劑造成的污染,并能對這些制劑進行過濾,從而消除污染。
4.在醫(yī)藥方面的應用
21世紀的健康科學,將以出入意料的速度向前發(fā)展,人們對藥物的需求越來越高??刂扑幬镝尫?、減少副作用、提高藥效、發(fā)展藥物定向治療,已提到研究日程上來。納米粒子將使藥物在人體內(nèi)的傳輸更為方便。用數(shù)層納米粒子包裹的智能藥物進入人體,可主動搜索并攻擊癌細胞或修補損傷組織;使用納米技術(shù)的新型診斷儀器,只需檢測少量血液就能通過其中的蛋白質(zhì)和DNA診斷出各種疾病,美國麻省理工學院已制備出以納米磁性材料作為藥物載體的靶定向藥物,稱之為“定向?qū)棥?。該技術(shù)是在磁性納米微粒包覆蛋白質(zhì)表面攜帶藥物,注射到人體血管中,通過磁場導航輸送到病變部位,然后釋放藥物。納米粒子的尺寸小,可以在血管中自由流動,因此可以用來檢查和治療身體各部位的病變。對納米微粒的臨床醫(yī)療以及放射性治療等方面的應用也進行了大量的研究工作。據(jù)《人民日報》報道,我國將納米技術(shù)應用于醫(yī)學領(lǐng)域獲得成功。南京??萍瘓F利用納米銀技術(shù)研制生產(chǎn)出醫(yī)用敷料——長效廣譜抗菌棉。這種抗菌棉的生產(chǎn)原理是通過納米技術(shù)將銀制成尺寸在納米級的超細小微粒,然后使之
附著在棉織物上。銀具有預防潰爛和加速傷口愈合的作用,通過納米技術(shù)處理后的銀表面急劇增大,表面結(jié)構(gòu)發(fā)生變化,殺菌能力提高200倍左右,對臨床常見的外科感染細菌都有較好的抑制作用。
微粒和納粒作為給藥系統(tǒng),其制備材料的基本性質(zhì)是無毒、穩(wěn)定、有良好的生物性并且與藥物不發(fā)生化學反應。納米系統(tǒng)主要用于毒副作用大、生物半衰期短、易被生物酶降解的藥物的給藥。
許多藥物都有細胞毒性,在殺死病毒細胞的同時,也會對正常細胞造成損傷。因而,理想的藥物載體不僅應有較好的生物相容性、較高的載藥率,還應具有靶向性,即到達目標病灶部位才釋放藥物分子。無機納米材料的大小和表面的電荷等理化性質(zhì)決定了納米材料的性能,研究這些可控特性可應用在生物醫(yī)學領(lǐng)域中。例如,用多孔硅作為藥物載體遞送柔紅霉素,治療視網(wǎng)膜疾病持續(xù)時間從幾天延長到3個月。通過調(diào)控將納米粒子孔徑從15nm變?yōu)?5nm,使柔紅霉素的釋放率增大了63倍,從而調(diào)控藥物的釋放。用介孔二氧化硅納米粒子運載化療藥物、探針分子向腫瘤細胞進行遞送,可用于癌癥等疾病的靶向性治療和早期診斷。介孔二氧化硅在藥物傳輸、靶向給藥、基因轉(zhuǎn)染、組織工程、細胞示蹤、蛋白質(zhì)固定與分離等方面有廣泛的應用。碳納米管及其衍生材料可開發(fā)用于電敏感的透皮藥物釋放,又可作藥物載體進行持續(xù)性釋放。比如,用超支化聚合物修飾碳納米管,可以從復合物的羥基末端聚集活性基團,從而增強溶解性能,作為抗癌的藥物載體,也可以用作藥物緩釋載體。用聚乙烯亞胺修飾多壁碳納米管,分散性好,能降低對細胞的毒性,進一步結(jié)合在殼聚糖/甘油磷酸鹽上,能增加凝膠的機械強度。同時,改變?nèi)芤旱膒H值、溫度等來構(gòu)建具有雙緩釋功能的溫敏性凝膠,能減少凝膠的突釋現(xiàn)象。納米鉆石(dND)裝載化療藥物具有較低的毒性和較高的生物兼容性。將葉酸等靶向分子修飾納米鉆石表面,用于裝載抗癌藥物,以H2N-PEG-NH2作為橋梁分子,形成納米靶向載藥系統(tǒng),對C6細胞具有靶向作用,為研制腫瘤靶向治療提供了參考依據(jù)。為了避免被單核細胞、巨噬細胞系統(tǒng)等非特異性吸收,并讓藥物優(yōu)先進入腫瘤細胞,用超支化縮水甘油(PG)修飾納米鉆石得到dND-PG,有較好的生物相容性,能避免被正常細胞的巨噬細胞非特異性攝取。加載抗癌藥物阿霉素顯示出對腫瘤細胞具有選擇性的毒性作用,可作為腫瘤藥物載體,對腫瘤細胞進行選擇性給藥。將藥物分子插入LDHs的層間形成藥物-LDHs的納米雜化物,藥物與LDHs層間的相互作用以及空間位阻效應能有效地控制藥物釋放,減少藥物發(fā)生酶解作用。LDHs表面存在大量的羥基,便于進行表面功能化修飾,增強靶向性,避免被巨噬細胞吞噬而從人體內(nèi)清除,提高藥物的輸送效率。LDHs適合裝載不同類型的藥物,將藥物插入到LDHs的層間結(jié)構(gòu),藥物以陰離子形式裝載并被控釋。通過共沉淀法在LDHs層間成功地嵌入維生素C,維生素C的陰離子垂直插于LDHs層間,熱穩(wěn)定性顯著增強。通過離子交換反應來釋放維生素C,延長釋放時間。
1.2蛋白質(zhì)載體
納米材料在診斷、藥物輸送、生物功能材料、生物傳感器等方面得到了迅猛的發(fā)展,出現(xiàn)了疾病治療、診斷、造影成像等多種功能的組合。無機納米材料在生物大分子藥物的載體,包括運載蛋白質(zhì)、多肽、DNA和siRNA等方面的研究較多。納米多孔硅有較好的生物相容性、生物可降解性和可調(diào)控的納米粒徑,可作為藥物輸送系統(tǒng)。殼聚糖修飾多孔硅后可用于運載口服給藥的胰島素,改善胰島素的跨細胞滲透,增加與腸道細胞黏液層的表面接觸,提高細胞的攝入,可用于口服遞送蛋白質(zhì)和多肽。納米羥基磷灰石與蛋白質(zhì)分子有高親和性,可用作蛋白質(zhì)藥物緩釋載體,能提供鈣離子,造成腫瘤細胞過度攝入,從而抑制腫瘤細胞活性,誘導腫瘤細胞凋亡。
1.3基因載體
基因治療是遺傳性疾病的臨床治療策略,主要依賴于發(fā)展多樣性的載體。無機納米材料用于基因療法是利用無機粒子和可生物降解的多聚陽離子合成新型的納米藥物載體,如介孔二氧化硅作為基因載體可用于腫瘤治療,促進體外siRNA的遞送。乙醛修飾的胱氨酸具有自身熒光的特點,可對pH值和谷胱甘肽進行響應。通過熒光標記類樹狀大分子的二氧化硅納米載體具有分級的孔隙,不僅毒性低、基因裝載率高,轉(zhuǎn)染率也較高。引發(fā)谷胱甘肽二硫鍵裂解,可促進質(zhì)粒DNA(pDNA)釋放,并能使用自發(fā)熒光來實時示蹤。又如,通過π-π共軛、靜電作用等非共價鍵作用力結(jié)合,能將DNA、RNA等生物大分子和化學藥物固定在氧化石墨烯上。
1.4骨移植
臨床上可用自體骨移植來治療創(chuàng)傷、感染、腫瘤等造成的骨缺損,由于骨移植的來源有限,且手術(shù)時間長,易導致失血過多和供骨區(qū)并發(fā)癥等,應用受到限制。將異體骨用作骨移植,則存在免疫排斥反應,且易被感染。而人工骨同自體骨有相近的療效,人工骨材料可采用鈦、生物陶瓷、納米骨、3D模擬人工骨髓等納米材料。例如,納米二氧化硅可替代骨組織,促進人工植入材料與肌肉組織融合。納米羥基磷灰石與人體內(nèi)的無機成分相似,其粒子有小尺寸效應、量子效應及表面效應等,可用作牙種植體或作為骨骼材料,能避免產(chǎn)生排斥反應,促進血液循環(huán),促進人體骨組織的修復、整合和骨缺損后的治愈。
1.5臨床診斷和治療
磁性氧化鐵納米粒子可作為造影劑用于腫瘤診斷中,對腫瘤分子產(chǎn)生磁共振分子影像或多模態(tài)腫瘤分子影像,也可用于循環(huán)腫瘤細胞的分離、富集。免疫磁分離法基于磁性雜化材料可導電,在外部磁場下積累,可用于臨床熱療。磁熱療以磁流體形式進入腫瘤組織,利用腫瘤細胞與正常細胞之間不同的熱敏感度,將外部磁場產(chǎn)生的磁能轉(zhuǎn)化成熱能從而殺死腫瘤細胞。磁性納米粒子還可用于生物傳感器中,利用磁現(xiàn)象和納米粒子從液相中分離并捕獲生物分子。用綠色熒光蛋白標記,形成溫敏的磁性納米固相生物傳感器,用磁性材料制成固相生物傳感器的支架,在磁場作用下,響應更快,表面易于更新,可用于免疫診斷。磁性納米氧化鐵作為臨床應用的磁性納米材料,受到人們的廣泛關(guān)注。Fe3O4和γ-Fe2O3的特殊磁性質(zhì)使其在靶向腫瘤藥物載體、磁療、熱療、核磁共振成像、生物分離等生物醫(yī)學領(lǐng)域中得以應用。用無機納米材料制作激發(fā)熒光探針進行臨床診斷,如用介孔二氧化硅制成的細胞熒光成像探針利用量子點良好的光穩(wěn)定性、較長的熒光壽命和較高的生物相容性,結(jié)合介孔二氧化硅可特異性地識別Ramos細胞的特點,并用激光共聚焦顯微鏡對Ramos細胞進行熒光成像,實現(xiàn)了對腫瘤細胞的早期診斷、檢測成像。富勒烯特殊的結(jié)構(gòu)和性質(zhì)使其可以廣泛地應用于光熱治療、輻射化療、癌癥治療等醫(yī)學領(lǐng)域,也可作為核磁共振成像的造影劑用于臨床診斷。但富勒烯不溶于水,對生物體存在潛在的毒性,限制了其在臨床的應用。富勒烯結(jié)合含羥基的親水性分子可改善其溶解性,羥基化富勒烯無明顯毒性,可作為抗氧化劑。聚羥基富勒烯利用近紅外光激活體內(nèi)的納米材料,用光熱對腫瘤細胞定位,避免了金納米粒子、碳納米管等在體內(nèi)造成聚積,利用免疫刺激作用來抑制腫瘤細胞的轉(zhuǎn)移、生長,從而減小腫瘤的尺寸,最終造成腫瘤細胞凋亡。因此,改造碳納米結(jié)構(gòu),在成像、吸附、藥物裝載與靶向運輸?shù)壬镝t(yī)學工程方面有潛在的應用價值。銀納米粒子殺菌活性遠高于銀離子,在殺菌抑菌方面得到廣泛的應用,可用于外科手術(shù)中的傷口愈合、藥學、生命科學等生物和臨床醫(yī)學領(lǐng)域。金納米粒子有較好的生物相容性,功能化的金納米粒子可用于生物分析、藥物檢測、臨床診斷等生物醫(yī)藥領(lǐng)域,可作為納米探針檢測重金屬離子、三聚氰胺等小分子,也可檢測DNA、蛋白質(zhì)等生物大分子,還可以用于對細胞表面和細胞內(nèi)部的多糖、核酸、多肽等的精確定位。鎳納米粒子固定在海藻酸水凝膠中,通過熱敏感粒子與鎳磁納米粒子交聯(lián)形成囊狀結(jié)構(gòu),組成熱磁雙敏感的磁性納米粒子。在交變磁場下緩慢釋放水凝膠中的鎳納米粒子,通過遠程調(diào)控來激發(fā)水凝膠中成纖維細胞的凋亡。無機納米材料的類別不同,在尺寸、形貌上有很大的變動范圍,因其核心材料的量子特性,已日益成為涉及臨床診斷、成像和治療的手段,為納米材料在生物醫(yī)學上的應用提供更多的可能。
2展望
納米技術(shù)作為新時代的疾病治療模式,為未來的臨床用藥提供了新的可能,在生物醫(yī)學的應用上有很大的前景。目前,癌癥治療主要包括手術(shù)、放療和化療等手段,而藥物劑量增多會造成副作用。納米粒子可以作為靶向藥物載體、成像造影劑、化療、熱療、磁療系統(tǒng),可通過血腦屏障,在治療神經(jīng)系統(tǒng)疾病中有很大的潛力,有望成為攻克癌癥的新手段。無機納米材料在藥物載體、臨床診斷和治療等方面有廣闊的應用前景,但目前的研究大多處于實驗階段。無機納米材料在生物醫(yī)學應用中有待解決的問題包括:
(1)提高疾病治療的針對性、靶向性和可調(diào)控性;
(2)使無機納米材料相對固定在腫瘤細胞表面,不至于擴散到正常組織,從而提高腫瘤部位的有效濃度,減少毒副作用;
(3)納米材料有潛在的毒性,可降低納米材料的毒副作用以達到臨床應用的標準;
(4)尋找優(yōu)質(zhì)材料,優(yōu)化結(jié)構(gòu),提高材料的生物相容性、生物安全性,并針對不同的藥物溶解性設(shè)計特定的載體和功能材料骨架,增加細胞的攝取和利用;
一、納米涂料的應用
通常傳統(tǒng)的涂料都存在懸浮穩(wěn)定性差,耐老化、耐洗刷性差,光潔度不夠等缺陷。而納米涂料則能較好的解決這一問題,納米涂料具有下述優(yōu)越的性能:(1)具有很好的伸縮性,能夠彌蓋墻體細小裂縫,具有對微裂縫的自修復作用。(2)具有很好的防水性,抗異物粘附、沾污性能,抗堿、耐沖刷性。(3)具有除臭、殺菌、防塵以及隔熱保溫性能。(4)納米涂料的色澤鮮艷柔和,手感柔和,漆膜平整,改善建筑的外觀等。
雖然國內(nèi)外對納米涂料的研究還處在初步階段,但是已在工程上得到了較廣泛的應用,如北京納美公司生產(chǎn)的納米系列涂料已大量應用于北京建欣苑、建東苑等住宅區(qū)的外墻粉刷,效果良好。在首體改造工程中,使用納米涂料1700噸,涂刷6萬平方米。復旦大學教育部先進涂料工程研究中心的專家已研發(fā)出了“透明隔熱玻璃涂料”。
二、納米水泥的應用
普通水泥混凝土因其剛性較大而柔性較小,同時其自身也存在一些固有的缺陷,使其在使用過程中不可避免地產(chǎn)生開裂并破壞。為了解決這一問題就必須加速對具有特殊性能混凝土的研發(fā),而納米混凝土就能有效的解決這樣問題,納米混凝土,與普通混凝土相比,納米混凝土的強度、硬度、抗老化性、耐久性等性能均有顯著提高,同時還具有防水、吸聲、吸收電磁波等性能,因而可用于一些特殊的建筑設(shè)施中(如國防設(shè)施)。通常在普通混凝土中加入納米礦粉(納米級SiO2、納米級CaCO3)或者納米金屬粉末已達到納米混凝土的性能,而且通過改變納米材料的摻量還能配置出防水砂漿等。目前開發(fā)研制的納米水泥材料包括納米防水復合水泥,納米敏感水泥、納米環(huán)保復合水泥以及納米隱身復合水泥。
納米防水水泥是通過在水泥中添加XPM水泥外加劑的納米材料而制成的,該納米外加劑摻入水泥后,可以加快水泥誘導期和加速期的水化反應,改善水泥凝固的三維結(jié)構(gòu),同時提高水泥石的密實度,增強了防水性能。
納米敏感水泥是在水泥中加入對周圍環(huán)境變化十分敏感的納米材料,從而達到改善水泥制品溫敏、濕敏、氣敏、力敏等性能。根據(jù)添加的敏感材料的不同可將納米敏感水泥用于化工廠的建設(shè)、高速路面的鋪設(shè)等。
納米環(huán)保復合水泥是利用納米材料的光催化功能,從而使水泥制品具有殺菌、除臭以及表面自清潔等功能。通常是選用TiO2作為納米添加劑。
納米隱身復合材料是通過使用具有吸收電磁波功能的納米材料(納米金屬粉居多),在電磁波照射時,納米材料的表面效應使得原子與電子運動加劇,促使電子能轉(zhuǎn)化為熱能,加強對電磁波的吸收,從何使材料能夠在很寬的頻帶范圍內(nèi)避開雷達、紅外光的偵查,這一材料常用于軍事國防建筑等。
三、納米玻璃的應用
普通玻璃在使用過程中會吸附空氣中的有機物,形成難以清洗的有機污垢,同時,水在玻璃上易形成水霧,影響可見度和反光度。而通過在平板玻璃的兩面鍍制一層TiO2納米薄膜形成的納米玻璃,則能有效的解決上述缺陷,同時TiO2光催化劑在陽光作用下,可以分解甲醛、氨氣等有害氣體。此外納米玻璃具有非常好的透光性以及機構(gòu)強度。將這種玻璃用作屏幕玻璃、大廈玻璃、住宅玻璃等可免去麻煩的人工清洗過程。
四、納米技術(shù)在陶瓷材料中的應用
陶瓷因其具有較好的耐高溫以及抗腐蝕性以及良好的外觀性能而在工程界得到了廣泛的應用(如鋪貼墻面的瓷磚),但是陶瓷易發(fā)生脆性破壞,因而在使用過程中也受到了一定的限制。使用納米材料開發(fā)研制的納米陶瓷則具有良好的塑性性能,能夠吸收一定量的外來能量。在陶瓷基中加入納米級的金屬碳化物纖維可以大大提高陶瓷的強度,同時具有良好的抗燒蝕性,火箭噴氣口的耐高溫材料就選用納米金屬陶瓷作為耐高溫材料。用納米SiC、Si3N、ZnO、SiO2、TiO2、A12O3等制成的陶瓷材料具有高硬度、高韌性、高強度、耐磨性、低溫超塑性、抗冷熱疲勞等性能優(yōu)點。納米陶瓷將作為防腐、耐熱、耐磨的新材料在更大的范圍內(nèi)改變材料的力學性質(zhì),具有非常廣闊的應用。
五、納米技術(shù)在防護材料中的應用
通常是在膠料中加入炭黑等以提高材料的防水性能,但這種材料的耐腐蝕性以及耐侯性較差,易老化,研制具有高強、耐腐蝕、抗老化性能的防水材料也是工程界一直在積極研究的問題,納米防水材料能夠很好滿足上述要求,北京建筑科學研究院就成功的研制了具有較好耐老化性能的納米防水卷材,該類防水卷材具有很好的強度、韌性、抗老化性以及光穩(wěn)定性、熱穩(wěn)定性等。納米防水卷材具有叫廣泛的應用前景,如建筑頂面、地下室、衛(wèi)生間、水利堤壩以及防潛工程等。
六、納米保溫材料
隨著我國推行節(jié)能減排的方針,工程界也越來越注重建筑的保溫節(jié)能性能,我國目前使用的比較多的仍是聚氨酯、石棉等傳統(tǒng)隔熱保溫材料,這些材料在使用過程中容易產(chǎn)生一些對人體有害的物質(zhì),如石棉與纖維制品含有致癌物質(zhì),聚氨酯泡沫燃燒后釋放有毒氣體,而通過使用納米材料開發(fā)研制的保溫材料則能避免這些弊端,如以無機硅酸鹽為基料,經(jīng)高溫高壓納米功能材料改性而成的保溫材料不僅具有很好的保溫效果,同時對人體也無損害,是一種綠色環(huán)保保溫材料。
七、納米技術(shù)在其粘合劑以及密封材料和劑方面的應用
對于一些在深海中作業(yè)的結(jié)構(gòu)以及其他特殊環(huán)境下工作的構(gòu)件,它們對結(jié)構(gòu)的密封性的要求非常高,已超過了普通粘合劑和密封劑所能滿足的范圍。國外通過在普通粘合劑和密封膠中添加納米SiO2等添加劑,使粘合劑的粘結(jié)效果和密封膠的密封性能都大大提高。其工作機理是在納米SiO2的表面包覆一層有機材料,使之具有永久性,將它添加到密封膠中很快形成一種硅石結(jié)構(gòu),即納米SiO2形成網(wǎng)絡(luò)結(jié)構(gòu)的膠體流動,提高粘接效果,由于顆粒尺寸小,更增加了膠的密封性。大型建材機械等主機工作時的噪聲達到上百分貝,用納米材料制成的劑,既能在物體表面形成半永久性的固態(tài)膜,產(chǎn)生根好的作用,大大降低噪聲,又能延長裝備使用壽命,具有非常好的應用前景。
八、結(jié)語
納米技術(shù)作為一門新興的學科,被譽為二十一世紀最具有發(fā)展前景的技術(shù),是對未來經(jīng)濟和社會發(fā)展產(chǎn)生重大影響的一種關(guān)鍵性前沿技術(shù)。納米技術(shù)在建筑材料方面的應用前景非常廣闊,納米技術(shù)不僅會推動建材新產(chǎn)品的開發(fā),還將為改善人們的生活環(huán)境,提高生活質(zhì)量做出不可估量的貢獻。納米功能材料已成為國內(nèi)外研究的熱點,目前研究開發(fā)工作正處于剛剛起步階段,還有很多問題還未很好的解決,需要將進一步加速對納米材料的研究以及推廣應用。納米材料將成為21世紀新型建筑材料的發(fā)展新方向,相信在不久的將來,我們將跨入一個全新的材料時代—納米材料時代。
參考文獻
[1]張立德.納米材料[M].北京:化工出版社,2002.
[2]宋小杰.納米材料和納米技術(shù)在新型建筑材料中的應用[J].安徽化工,2008,(8):14-17.